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1 Summary

This report summarizes the work completed during the third year of the three year AFOSR
Grant no. F 49620-03-1-0298 to the University of Kansas, Lawrence, KS (K.S.Surana,
PI) and Grant no. F 49620-03-1-0201 to Texas A & M University, College Station, TX
(J.N.Reddy, PI). The development of hpk mathematical and computational framework
for all boundary value problems (BVPs) and initial value problems (IVPs) regardless of
their origin or fields of application has been the main thrust of this research. Previous
two reports have presented the mathematical and computational developments for BVPs
and IVPs in hpk framework in which the order of approximation space k defining global
differentiability of order (k - 1) has been pointed out as an independent computational
parameter in addition to h and p. Successful applications of this new hpk framework have
been presented in various areas of continuum mechanics to demonstrate the benefits of
using this framework as apposed to h, p framework used currently in the finite element
processes.

The thrust of the work completed during the third year of these grants have been in
the following areas:

(I) Preliminary research towards development of mathematical models for fluid-solid
interaction and associated computational infrastructure in hpk mathematical frame-
work

(II) Preliminary research work towards development of concepts for a priori and a pos-
teriori error estimation in h, p, k mathematical and computational framework

(III) Rediscretization, moving meshes and solution mapping strategies and associated
computational infrastructure for BVPs and IPVs in hpk framework

While the works in (I) and (II) are aimed towards preliminary concepts and methodol-
ogy developments, the research in (III) is at a higher maturity level and has already been
applied to many BVPs and IVPs, but some work is needed to streamline the algorithms
for applications to practical problems of interest. Details for each of the three areas of
research are presented in the following.

2 Fluid-solid interaction

The preliminary work dealing with general methodology and development of mathematical
models for fluid-solid interaction problems (BVPs and IVPs) is presented in this section.

2.1 Introduction

The thrust of this research is to develop basic concepts and methodologies towards de-
velopment of a new mathematical and finite element computational framework based on
h, p, k for fluid-solid interaction BVPs and IVPs. For all fluid-solid interaction problems,
a single mathematical model describing all phases of the physics (i.e. solid, liquid, or
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gas) is essential in the development of a rigorous mathematical framework that natu-
rally translates into a sound computational infrastructure in which no additional ad-hoc
adjustments and treatments are needed. The interface behaviors are intrinsic in the math-
ematical models hence, details at solid-liquid, liquid-gas or solid-gas interfaces are resolved
naturally and accurately. This methodology eliminates the need for constraint equations
at the interfaces to couple the behaviors of diverse media in complex interaction prob-
lems. It also eliminates inter-element flux problems and problem dependent treatments
associated with moving meshes and re-discretizations.

While the mathematical models are generally derived using conservation laws, consti-
tutive equations, and equations of state, the specific forms of the governing differential
equations (GDEs) vary significantly. First-order systems derived using auxiliary variables
and auxiliary equations, decomposition of total stress into elastic and viscous parts for
polymer flows, use of vorticity and stream functions are a few examples of commonly
used approaches. When using the Galerkin method with weak form, some forms of GDEs
may be advantageous over the others. The current mathematical framework based on h, p
finite element processes employs local approximations of class CO in space as well as in
time. Convergence of the numerical errors is measured in terms of Lebesgue measures or
L2-type global norms. Consequently, the differentiability requirements may be violated
at sets of measure zero in the discretizations. This results in flexibility but at the expense
of local (inter-element) accuracy and local convergence. The proposed framework utilizes
the theory of continuous and differentiable functions in conjunction with Sobolev spaces
and hence it is possible to incorporate the desired global differentiability in the design of
the computational process due to k, the order of the approximation space.

In this research it is demonstrated that the GDEs in their strong forms (higher order
systems) are highly meritorious over all others. Additionally, use of fundamental variables
such as density, velocities, temperature is preferred over others (mathematical quantities)
in that such variables naturally lead to simplicity in defining boundary and initial condi-
tions. Use of the strong form of GDEs also eliminates redundancies and inconsistencies
that may arise when constructing local approximations. Higher order systems of GDEs,
however, require approximations in higher-order spaces that have many additional benefits
[1-4] as shown subsequently.

In Section 2.2, we present a brief summary of currently used finite element approaches,
followed by the development of mathematical models, mathematical and computational
approach in Sections 2.3-2.5.

2.2 Background

2.2.1 Methods of Approximation

In designing finite element processes one utilizes mathematical models to construct inte-
gral forms [5-7]. For example, consider the operator equation Ap - f = 0 in Q, where
A is a differential operator, ýo is the dependent unknown, and f is the data. We assume
that the solution W exists and is unique. We construct fq(Aso - f)v dQ = 0. Here v is
an arbitrary weight (test) function that vanishes on the part F1, where W = W0. Utilizing
this integral form we can distinguish between the following weighted-residual methods:
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1. Petrov-Galerkin method (PGM): In this method the weight function is an indepen-
dent function v = 0 6 

4Ph, with v = 0 on F, if W = W0 on F1.

2. Galerkin method (GM): If Wh is an approximation of (p, the Galerkin method seeks
Ah such that f 0 (Al(-f)v dQ = 0 with v = 5Wh. This can be written as Bg(v, Ah)

ig(v).

3. Galerkin method with weak form (GMWF): In this approach, we set v = J•h

and transfer some of the differentiation from Wh to JAh to obtain Bq.(6,,, (h) =

4. Least squares method (LSM): In this approach we define the residual E by E =

Aph - f, construct a functional I((Ph) = (E, E)n, and determine Wh by minimiz-
ing I(Wh). Thus, 3 (Ph) = 0 provides the necessary condition from which (h is
determined, and 62I(ph) > 0 provides the sufficient condition.

2.2.2 Variationally Consistent Finite Element Processes

The methods of approximation described above are classical methods in which the domain
of definition Q is not discretized. The major drawback of these methods is that it is very
difficult to construct global approximation functions for arbitrary domains and boundary
conditions [7-10]. In FEM, we utilize these methods over a discretized domain Q' = - fU'
in which n' is a closure of Q', an element. In this approach, the global approximation
Wh = Utp, where o is the restriction of Ah over Pe, and is referred to as the local
approximation. While the local differentiability of (h can be controlled by the degree of
local approximation p, the global differentiability of (h depends entirely on the order k of
the approximation space. Thus, k is an independent parameter in finite element processes
in addition to h and p. The need for global differentiability arises from the requirements
of continuity and differentiability of W over Q which is intrinsic in the physics (see Figure
1 and Sections 3.2 and 3.3). The issues of non-smooth data and applied disturbance often
leading to singular BVP and IVP can also be easily resolved in h, p, k framework [11].

In the GM, GMWF and PGM, we convert a system of differential equations into an
algebraic system using integral forms and the approximation (h. In the current math-
ematical framework, we must establish, on a problem by problem basis, as to which
possible choices of h and p ensure well-posedness. This issue is resolved in the current
research by establishing a link between the integral forms and the elements of the calcu-
lus of variations. Calculus of variations deals with extrema of functionals which are often
integrals.

Let I(•(h) be a functional. Then based on calculus of variations [5-7], 3I((() = 0
provides the necessary condition from which Ph is determined and J

2 I((h) provides an
extremum principle or sufficient condition that establishes uniqueness of (h obtained
from 6I((,) = 0. One can show that a W1, that yields a unique extrema of I((h) is also a
unique solution of the differential equation AAPh - f = 0, which is often referred to as the
Euler equation. Thus, we have a link between the solution (h of the differential equation
and calculus of variations. We note that integral forms in the GM, GMWF, and PGM
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are equivalent to 3(JPh) = 0. In these integral forms, existence of I(Voh) is not always
guaranteed. Even when I(ph) exists, P2I(Vh) may not yield a unique extremum principle.

To distinguish well-posedness of the integral forms, the concepts of variational consis-
tency (VC) and variational inconsistency (VIC) are introduced. If there exists a functional
I(Aph) such that 6I(Ah) = 0 and P2I(Ah) yields a unique extremum principle then the inte-
gral form under consideration is termed variationally consistent. Obviously, VC integral
forms always ensure unique Vh. Integral forms that are not VC are called variationally
inconsistent. In such cases the resulting computations may not be unconditionally stable
or may fail all together. It has been shown by Surana et. al [1-4] that the concepts
of VC and VIC permit us to decide whether integral forms would yield unconditionally
positive-definite algebraic systems and hence unconditional numerical stability. This is an
issue of paramount importance in adaptive processes in which one often begins with very
coarse discretizations and very low p-levels. Variationally inconsistent integral forms in
such cases may not even permit computations without the use of ad-hoc approaches and
upwinding methods. The PGM and GM are always VIC regardless of the differential op-
erators; GMWF is variationally consistent when the bilinear functional is continuous and
satisfies the so-called Inf-Sup condition which is only possible for self-adjoint operators;
LSM, on the other hand, is always VC for all three types of differential operators. These
conclusions are significant and helpful in assessing the current finite element computa-
tional technology and associated deficiencies as well as in designing a new computational
framework in which the computational processes always remain numerically stable and
nondegenerate.

2.2.3 Mathematical Models and Currently Used Finite Element Methods

The mathematical models for fluid-solid interaction problems are diverse. The mathe-
matics of performing finite element computations depends on whether the models are
continuum based. In the proposed research we only consider fluid-solid interaction math-
ematical models that are based on continuum mechanics. The solid medium could be
elastic, elasto-plastic, visco-clastic or even energetic material. The fluid can be an incom-
pressible Newtonian, Generalized Newtonian or a polymeric liquid with elasticity as well
as viscosity. The fluid medium can also be a gas with complex properties requiring real
gas models and temperature dependent transport properties. The combined fluid-solid
problems may be non-isothermal with large motions, large strain rates, moving interfaces,
and/or moving boundaries. In addition, the problems may involve chemical kinetics if
the materials are energetic or reacting. Towards obtaining numerical solutions of such
interaction problems, we present a comprehensive review of currently used mathematical
and finite element models. This is followed by details of the concepts developed in the
present methodology.

The mathematical models of fluid-solid interactions often result in non-linear partial
differential equations in space coordinates (BVP) or space cordinates and time (IVP).The
most prevalent finite element computational methodologies for obtaining their numer-
ical solutions is based on GMWF which results in integral forms that are VIC. Such
integral forms yield computational processes that are not unconditionally stable or non-
degenerate. Thus, one must establish for each problem, the ranges of computational and
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physical parameters for which the computations will remain stable. This often leads to
unreasonable and impractical dicretizations and p-levels. The desire to compute with
coarser dicretizations and lower p-levels has lead to the developments of upwinding meth-
ods [12-26]. Amongst many other drawbacks, the most disturbing aspect of such methods
is that they are problem dependent. Hence, they cannot be considered as a general com-
putational methodology for all BVP and IVP. In the proposed research we only consider
VC integral forms. We therefore, eliminate the need and use of problem dependent ap-
proaches all together.

The fluid-solid interaction problems most naturally can be viewed as initial-value prob-
lems (IVP). Current computational approaches for IVP can be broadly classified into two
groups: space-time decoupled methods and space-time coupled methods. Space time
methods with time marching (as opposed to space-time meshes) offer many advantages
[4, 27]. Most significant features of space-time coupled methods are: (i) concurrent de-
pendence of the solution on space and time, (ii) possibility of making mathematical classi-
fications of space-time differential operators and hence developing a general mathematical
framework for all IVP, (iii) possibility of assessing VC or VIC of space time integral forms,
and (iv) VC integral forms lead to unconditionally non-degenerate computations (no is-
sues of stability). None of these features exist in space-time decoupled methods. In the
present work, we only utilize space-time integral forms that are space-time variationally
consistent.

The mathematical models of fluid-solid interaction problems can be established either
using Lagrangian approach or Eulerian approach. In the Lagrangian approach, most com-
monly used in solid mechanics, all quantities of interest are measured in a fixed frame of
reference embedded in the body. In contrast, in the Eulerian description all quantities of
interest are measured and referred to a reference frame fixed in space and material parti-
cles move through the space. In the currently used approaches for fluid-solid interaction
problems, each medium of the process is mathematically modeled and discretized using
the most suitable strategy for each medium and then interfaced through constraint equa-
tions to the neighboring media. In this approach: (1) The interface behavior, which is
often of great interest is highly dependent on the nature of constraint equations describing
the coupling. Their legitimacy in relation to the true physical behavior may be difficult
to ascertain. (2) Often the variables from each medium at the interface boundaries are
different. This results in significant difficulties in describing constraint equations at the
interfaces. (3) The most disturbing feature of this approach is that the integration of
the different media of the process at the interfaces is only established numerically after
discretizations. (4) Inaccuracies in the constraint equations at the interfaces may also con-
taminate the solutions in the entire media. Such approaches are problem dependent and
can not viewed as a general methodology for all fluid-solid interaction problems. In the
approach presented here, all media of fluid-solid interaction problems are mathematically
modeled under one mathematical umbrella. This approach completely eliminates the ne-
cessity of applying interface constraint equations but requires the development of rigorous
mathematical models. Details of this approach are described in Section 2.3. In summary,
the mathematical models in Lagrangian frame of reference for solids and those for fluid
in Eulerian frame of reference with constraint equations at the interfaces describing their
coupling remains the current methodology for fluid-solid interaction processes.
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2.2.4 Moving Fronts, Boundaries, Meshes, and Rediscretizations

Accurate and practical numerical simulations of fluid-solid interaction problems may re-
quire a representation of moving interfaces, fronts and/or moving boundaries that can
be tracked accurately. The discretizations in other regions are kept intact but moved to
different locations. This requires a mathematical infrastructure in which front tracking
and moving mesh capability is transparent during computations. In other instances a
total re-discretization may be required. The mathematical framework to support these
features are of critical significance in interaction problems. It requires the results of one
discretization to be mapped onto a new dicretization. It is well known that in the h, p
framework based on global approximations of class C0, the mapping of solutions from one
discretization to another may suffer severe damage in the solution derivatives, referred
to as the flux problem in the published literature (discontinuity of normal derivative to
the inter-element boundaries, see Figure 1). Many problem dependent remedies are avail-
able [27] to circumvent these difficulties to some extent. Due to the CO nature of the
global approximation used, the inter-element flux discontinuity remains. Thus, within
h, p framework with CO global approximations, a general methodology for moving fronts,
moving meshes and re-discretization that is free of flux problem is not possible.

Moving interfaces, fronts and boundaries can be tracked using the level set theory. The
h, p, k framework maintains sharpness of the fronts during all stages of the evolution. Since
the global differentiability of the approximation is controlled through k, flux problems are
totally absent in the present approach. Mapping of the solutions from one discretization to
another with desired global differentiability and measures of their accuracy remain totally
transparent (See Section 4 on Rediscretization,moving meshes and solution mapping).

2.3 Development of Mathematical Models

This is one of the most important phases of the present research. We recognize that the
fluid description in Eulerian frame of reference is essential due to large motions of the
fluid particles. In the present work, we construct the mathematical model of the entire
fluid-solid system in the Eulerian frame of reference.

The mathematical model for the fluid medium are constructed using the Eulerian frame
of reference and conservation of mass, momentum and energy, constitutive equations,
and equations of state. The fluid may be Newtonian, generalized Newtonian (power law,
Carreau-Yasuda, Bingham etc.), or viscoelastic liquid (Maxwell, Oldroyd, Giesekus, PTT,
etc.), or a gas with complex constitutive models and temperature dependent transport
properties. The process can be non-isothermal with chemical kinetics. The variables in the
formulation may include density, velocities, pressure, stresses, and temperature, among
others. For the equations of state describing relationships between density, pressure and
temperature, we consider ideal gas as well as real gas models such as Van der waals,
Redlich-Kwong, Beattie-Bridgeman, Benedict-Web-Rubin, and virial models. Transport
properties such as viscosity, thermal conductivity, specific heat will be considered to be
temperature and possibly strain-rate dependent. Models such as power law, Southerland
law are utilized for this purpose.

For a linear or non-linear elastic solid medium as well as the solid medium undergo-
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ing large deformation and strain rates with plasticity, the mathematical models are also
derived in the Eulerian frame of reference. While the basic conservation laws: continu-
ity, momentum and energy remain the same as in the case of fluids, some modifications
are needed for solids. Additionally, the constitutive equations for solids require more
careful considerations. The solid medium may be elastic, elasto-plastic, viscoelastic, het-
erogeneous (i.e.,laminated composite) or even energetic. The Cauchy stress tensor 0- is
decomposed into deviatoric and hydrostatic parts. With this decomposition, deviatoric
stress components in solids have the same physical meaning as viscous stress in case of
fluids after using the Stokes hypothesis. Density, velocities, pressure, deviatoric part of
Cauchy stress, and temperature are the variables of choice in the mathematical models
of both fluid and solid media.

Use of velocities in the conservation laws requires that the constitutive equations for
the solid medium be derived in terms of strain rates as opposed to strains used in the
Lagrangian frame of reference. For this purpose, we employ rate constitutive models
based on stress tensors of Jaumann, Truesdell, Green-Nagdi, and convected stress tensor
[28-31]:

3Da tDa D 9 nD r CDo C-JC : D; ' C : D; - 'C : D; - C: D
Dt Dt Dt Dt

where 2- with superscripts j, t, gn and c are Jaumann, Truesdell, Green-Nagdi, and
convected rates of Cauchy stress o. Here J ICt, gnC and cC are the corresponding
material tangent moduli tensors and D is the symmetric part of the rate of deformation
tensor. The rate constitutive equations are invariant of rotations. Note that the choice
of one rate equation over other is material dependent and there is no consensus on their
choice. In the present research, we consider all four rate equations and investigate their
ranges of applications for various materials. When the solid medium is compressible (as
in case of high strain rate plasticity) appropriate equations of state (i.e., [32] and others)
are utilized to define relationships between density, pressure and temperature.

When these mathematical models are discretized and solved numerically, the inter-
action of the solid medium with the fluid medium at the interfaces is intrinsic in the
mathematical models and hence completely eliminates the use of constraint equations at
the interfaces. Since the mathematical models are in Eulerian frame of reference, the com-
putations for these models are on a fixed discretization hence eliminating re-discretizations
and mapping of solutions as integral part of the numerical computational methodology.

2.4 Higher-Order Global Differentiability of Approximation Func-
tions

Theoretical solutions of the mathematical models may be of higher-order global differen-
tiability in space as well as in space and time. When considering numerical solutions of
these governing differential equations using FEM, the higher-order global differentiable
approximations in space as well as in space and time are meritorious over solutions of
class Co [1-4].

Surana et. al [1-4] have shown that the order k of the approximation space Hkp

establishes global differentiability of order (k - 1) of the numerical solutions, and is an
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independent parameter in all finite element computations in addition to h and p. They
have developed a k-version of the finite element method and associated hp, pk and hpk
processes. Authors also shown that even the most prudent hp-adaptive processes cannot
alter the order k of the approximations. Adaptive control of higher-order global differ-
entiability allows control of continuity and differentiability of any quantity of interest in
the design of a computational process. The higher-order globally differentiable approxi-
mations in space and time for initial-value problems (IVP) require the use of Hk',p spaces
in which k = (kl, k2) and p = (pl,p2) with pi > 2k, - 1 and P2 _> 2k2 - 1; here k, and
k2 denote the orders of the approximation spaces in spatial coordinates and time, respec-
tively, and P1, P2 are the corresponding degrees of approximations. Higher-order global
differentiability of the approximations is necessary when the theoretical solution is of a
higher class and therefore has higher-order global derivatives. In the case of singular data,
boundary or initial conditions and their approximations in Hkp space using interpolants
permit one to resolve the desired behaviors as a suitable k is adapted [11]. Use of Hk'p

scalar product spaces for space-time approximations has been extensively investigated by
Surana et. al [1-4, 11] and they have shown that very high accuracy is achievable.

For illustrative purposes, we consider the steady state convection-diffusion equation
(BVP) for Peclet number of 100 shown in Figure 1. The theoretical solution is of class
C'. Numerical solutions of classes Cj, j = 0, .., 4 (corresponding to k = 1, ... , 5) are
computed using least squares finite element formulation (VC) for a uniform discretization
of ten p-version ID elements. In most engineering applications, at least the first derivative
of the solution is of considerable interest. Figure 1 shows dpl,/dx versus x at and in the
neighborhood of x = 0.9 (inter-element boundary) for the solutions of various classes and
a comparison with the theoretical solution. Discontinuity of dqoh/dx for the solutions of
class Co (k = 1) at x = 0.9 and its influence, causing oscillations in the neighboring
elements is clearly observed. The discontinuity of dýph/dx is also observed at all other
inter-element boundaries, however the magnitude decreases moving from x = 1.0 toward
x = 0.0 due to decreasing magnitude of d&o/dx (theoretical value). Solutions of classes
C' to C' show dramatically improved behavior of d~phi/dx with lower degrees of freedom
(dofs) compared to those used to obtain the C' solution. Solution of class C' is almost
in perfect agreement with the theoretical solution for only 108 dofs compared to 120 dofs
used to obtain the Co solution that is grossly in error. Progressive reductions in total
dofs for progressively higher classes of approximations are more dramatic for 2D and 3D
problems. We note that the L2 norm of the error in the first derivative for C4 solution is
two orders of magnitude lower than that for Co solution. Ability of the approximations
of higher classes in approaching theoretical solutions efficiently is clearly observed. In
this research, we propose to construct the space and space-time approximations of higher
order global differentiability in the Hk',P spaces for obtaining finite element solutions of
the mathematical models.

2.5 h,p, k Finite Element Processes: VC Integral Forms

The governing equations of non-linear processes in the fluid-solid interaction considered
here are naturally non-linear partial differential equations. In case of IVP all quantities of
interest are simultaneously dependent on space coordinates as well as time. We solve these
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GDEs for both BVP and IVP using h, p, k finite element processes in which approximations
in space as well as in space and time are of higher-order global differentiability. The space
as well as space-time integral forms are always variationally consistent. The significant
features of this methodology are summarized below.

"* For BVPs, finite element processes based on variationally consistent integral forms
are considered so that unconditional stability of the resulting computational pro-
cesses is ensured.

" For IVPs, space-time coupled FE processes [4] are used as opposed to space-time
decoupled approaches [27]. Space-time coupled methods are consistent with the
physics of the IVPs.

" Only for space-time coupled finite element processes with space-time integral forms
it is possible to establish a link between the integral forms and the calculus of
variations. Surana et. al [4] have shown that space-time variationally inconsistent
integral forms yield computational processes in which the coefficient matrices are
always non-symmetric. Such computational processes are only conditionally stable
and may even become totally degenerate for some choices of h, p and k. Space-time
variationally consistent integral forms always yield symmetric coefficient matrices
that are positive-definite and the computational models are unconditionally stable
and non-degenerate regardless of the choice of h, p, k as well as the parameters of the
physics. The space-time differential operators in the mathematical models of fluid-
solid interactions are naturally non-linear. Surana et. al [4] have shown that for
such differential operators only the space-time integral forms derived using space-
time least squares processes are VC and hence are computationally meritorious over
all others. Therefore, these are be utilized in the present research.

"* The space-time least squares processes are also completely free of numerical disper-
sion [33] for appropriate choices of h, p and k. This feature permits computations
that are time-accurate for IVPs.

" Commonly encountered limitations of CFL number and stability issues in space-time
decoupled methods are totally absent in the present methodology due to variational
consistency of the integral forms.

" When GMWF is used to obtain numerical solutions, the resulting integral forms
are VIC, and it becomes necessary to use upwinding techniques such as SUPG,
SUPG/DC, SUPG/DC/LS [12-26] and so on to stabilize the computations. In the
current methodology, VC of the least squares integral forms eliminates the use of
problem dependent upwinding methods all together. This is a significantly advan-
tageous characteristic of the computational methodology presented here.

" Surana et. al [4] and others [27] have shown that space-time marching techniques
are advantageous over the space-time meshes in terms of computational efficiency
as well as control over the solution errors during evolution of the solution. The
numerical solution is computed for one strip at a time, and only when the desired
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solution accuracy is achieved then marched in time until the target time is reached.
In space-time meshes, the problem size is significantly larger than that in the space-
time strip approach, and since the solution is computed simultaneously for all values
of time, error control as in space-time strip is not possible.

" While much is published in the numerical analysis of fluid-solid interaction problems,
the solutions independent of the computational parameters (referred to as mesh
independent solutions) are generally not available. In h, p, k framework proposed
here, numerical simulations are sought that are independent of h and p for a chosen k.
The proximity of such solutions to the theoretical solutions are established through
appropriate measures.

" For a numerical solution of a BVP to be valid it must correspond to the stationary
state of the corresponding IVP. In many instances in polymer flows in which tile
constitutive equations are highly complicated and are empirical (Maxwell, Oldroyd,
Giesekus, PTT, models etc.). This aspect is essential in establishing the legitimacy
of the solutions of the BVP.

" Time accurate evolutions for fluid-solid interaction problems are generally not re-
ported. Numerical solutions of such processes available in the literature are obtained
using GMWF (VIC) with upwinding techniques. In the present work, we establish
time accurate evolutions of fluid-solid interaction problems.

" In the following we present the basic steps of LSM for non-linear BVP and IVP [3-4]
that are encountered in fluid-solid interactions. Let Ap - f = 0 be a BVP or an
IVP in Q, Wh be an approximation of Wo and Aph - f = E be residual in Q. Then
we construct a functional,

I(Wh) = (E, E) (1)

and the necessary condition for its minimum is

6I(ph) = (E, 6E) = 9(Wh) = 0 (2)

The second variation yields

6 2 1(Wh) = (6E, 6E) + (E, 62 E) (3)

We note that 62 1(Wh) is not unconditionally greater than zero and does not represent
a unique extremum principle unless (E, 62 E) in (3) is neglected [3-4,33], which
amounts to correcting the search direction. However, we still seek the solution of
(2). Thus we use

62I(Wh) = (6E, 6E) (4)

Note that J
2I(ph) defined by (4) is always greater than zero; hence, a unique ex-

tremum principle and a Wh obtained from (2) minimizes I(W,) in (1). The system
of non-linear equations in (2) are solved using Newton's method with line search.
Let Who be a starting solution, then, we have the following:

[2 -1(5

Ph = + ± AWO; Aph = (h)LWOfg (wh)} (5)
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The factor (Y is determined such that I(Ph) _ I(p'h). We remark that the LSM based
on (1), (2), (3), and (5) is VIC, while the LSM based on (1), (2), (4), and (5) is VC.
Rationale of deriving (4) from (3) has been established in [3,34]. We consider the
steady state Burgers equation in (0,1) with o(0)=1.0 and W(1)=O.O. Figure 2 shows
numerical solutions obtained using VC and VIC least squares formulations. At p =
7, VIC formulation produces spurious solution, though criterion for the convergence
of the Newton's method with line search is satisfied and the least squares functional
is of the same order of magnitude as in case of VC integral form. Additionally,
convergence of the iterative solution method slows down significantly in case of a VIC
integral form for all p levels, requiring over 50 iterations, whereas VC formulation
always converges in less than 10 iterations for all p levels. This example demonstrates
the potential of failure of VIC integral form for some choice(s) of computational
parameters (p level in this case). Consequences of VIC integral forms in GAL/WF
are far more serious if upwinding methods are not used.

2.6 Preliminary Results

Figure 3 shows preliminary results of evolutions for 1D axial stress wave propagation in
media containing bimaterial interfaces obtained using computational methodology dis-
cussed in this research. The mathematical models for both fluid and solid media are in
Eulerian frame of reference. Interface coupling equations and upwinding methods are
not used at all. The integral forms are space-time variationally consistent, hence ensure
unconditionally stable computations during all stages of the evolution. In all cases wave
propagation, transmission, reflection and interface behavior is simulated easily. Interface
behaviors are oscillation free and wave motions are in conformity with the impedences of
the media and their transport properties.
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3 A priori and a posteriori error estimation : Pre-
liminary work

3.1 Introduction

In recent works, Surana et.al. [1-4] have shown that order k of the approximation space
defines global differentiability of order (k - 1) of the approximations and is an indepen-
dent parameter in all finite element computations. Authors have established k- version
of finite element method and associated hk, pk, hpk processes in addition to h, p-versions
and h,p, hp processes used currently. Under the AFOSR grants F 49620-03-1-0298 and
F 49620-03-1-0201, Surana et.al. [1-4] proposed and developed hpk mathematical and
computational framework for finite clement processes for solving BVP and IVP. Due to
the fact that h, p and k are independent parameters in the new mathematical framework,
all quantities of interest in the finite element computations within this framework are
naturally dependent on h, p and k as opposed to only h and p.

A-priori and a posteriori error estimates are intrinsically important aspects of a math-
ematical framework for finite element computations. A priori and a posteriori error esti-
mates derived and used currently are strictly based on h and p. The global approximations
are almost always assumed to be of class C'. The purpose of this research is to examine
the methodology for a priori and a posteriori error estimates for 1-D, 2-D and 3-D BVP
and IVP that are dependent on independent computational parameters h, p and k.

The work is basic and fundamental in that it: (i) requires a closer examination of the
global behaviors of approximations to assess and determine the intrinsically important ap-
proximation features dependent on k that are ignored in the currently used methodologies.
(ii) requires development of fundamental approaches through with approximation aspects
dependent on k can be incorporated in the a priori and a posteriori error estimates. Our
preliminary investigations show that inter-subdomain behaviors of the approximations
(normal derivatives of dependent variables) ignored in the currently derived estimates
are dependent on k. These behaviors must be incorporated in the error estimates of the
quantities of interest so that the resulting estimates will hold globally in the pointwise
sense.

A priori and a posteriori estimates for BVP and IVP must be considered in h, p, k
framework in which approximations are in higher order scalar product spaces Hkp (k
being the order of the space). For initial value problems, such estimates must consider
k = (k 1,k 2),p = (Pl,p2) in which p1 Ž_ 2k, - 1,P2 Ž 2k 2 - 1 in which k, and k2 are the
orders of the approximation spaces in space and time and pl, P2 are the degrees of local
approximations in space and time. The importance of these estimates in adaptive pro-
cess, estimation of theoretical convergence rates achievable, and rigor of the mathematical
framework for finite clement processes has been well recognized. The concepts discussed
here will bring the mathematical foundation for finite element computations in h, p, k
framework to a more complete stage in which adaptive processes in h, p, k framework can
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be initiated and designed for optimality of computational efficiency and appropriate error
control.

3.2 A review of current methodology and development of con-
cepts in hpk framework

In this section we present some preliminaries and a short review of currently used method-
ology of deriving the estimates and demonstrate the need for new research in this area.
The finite element approximations in Sobolev space (generally of order 1) and the asso-
ciated infrastructure leading to the theory of generalized solutions or theory of distribu-
tions forms the mathematical backbone of a priori and posteriori error estimations. To
demonstrate the features of the currently used mathematical framework, we consider the
following 1-D simple boundary value problem,

dx -= f in Q=[O,L] (1.1)

dX2

with

Io0 = Wo and .L= q (1.2)
dx

Galerkin method with weak form yields the following integral form,

B(v, p)Q = 1(v)0  (1.3)

in which

B(v, W) Q --d dV dd (1.4)

1(v)= (f, v)Q + qv(L) (1.5)

and v = 6W; ()

Let QT = (Uef2) be a discretization of Q in which Q_ is a typical subdomain 'e' of fT
and let Wh = U h be an approximation of W in 0T where We approximates WI over an
element 'e'. The W,, would be a solution of

B(v, Wh) = 1(v) ; v = 6Wh (1.6)

For the discretization Q2 T, we obtain

ZBe(v, W') = E l1(v) ; v = J (1.7)
e e

In (1.7), B'(v, We) is obviously from (1.4). However, 1' le(v) requires a closer examination.
Using (1.5), we obtain

Zl(v) = Z(f v) ( + (V + v(x()P)) (14)

e e e

where x' and x4 are nodal coordinates of the two end nodes of the element.
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Remarks

(1) If A and hence W' are of class C', i.e. in HI'P(Qe) scalar product space, then d-

is discontinuous at the inter-element boundaries and (1.7) from (1.3) is not possible
in the strict sense of calculus of continuous and differentiable functions.

(2) However, based on theory of distributions, (1.7) from (1.3) is valid in Hl'P(Qe) space
in which Ph is of class C'. In such approach it is well known that inter-element
behavior is ignored.

(3) Furthermore, when computing for nodal degrees of freedom in (Ph (or W, i.e. con-
stants in the linear combination) using (1.7), one must impose the condition that
sum of secondary variables at the inter-element boundaries is zero (assuming no ex-
ternal disturbance is applied at such nodes). This condition is not supportedby the
local approximations W, over 0' when We are of class C', due to the fact that d4
is discontinuous at the interelement boundaries. Thus when Wh are of class C', we
have a computational process in which there are inconsistencies at all inter-element
boundaries. If one involves h, p, hp-adaptive processes with W' of class C0, then a
vast amount of resources are spent in overcoming the inconsistency described here.

(4) When V are of class C', i.e. in H 2'P(Oe) scalar product space: (a) (1.7) from (1.3)
conforms to the calculus of continuous and differentiable functions due to the fact
that 'h and • are continuous everywhere in OT including inter-element boundaries,
and hence the integrand in (1.3) is continuous in QT (b) the conditions on the sum
of the secondary variables is enforced correctly at the inter-element nodes due to the
fact that local approximations W, in H2'P(Qc) space support this condition. Hence,
there is no inconsistency in the computational process when W' are of class C2 in
H,2,p(Qe) space. The issues discussed here become far more serious and damaging
in two and three dimensions

This simple model BVP, its finite element formulation and the remarks presented
here demonstrate how one ignores the inter-element behaviors and creates inconsis-
tency in the resulting computational process in one approach (current approach) and
how simply these are avoided all together in the hpk framework. Since, the a priori
and posteriori error estimation techniques are based on weak forms such as (1.6) or
(1.7) in which W', are of class Co in Hl'P(Qe) spaces, it is rather straightforward to
observe that in these methodologies inter-element behaviors are ignored (just like it
is in (1.6) or (1.7) where W' is of class CO). A priori and a posteriori error estimates
used currently are derived in terms of Lebesgue measures that do not incorporate
the inter-element behaviours. Such estimates thus naturally are only functions of
h, p and smoothness of the theoretical solution in each element. In view of the fact
that all finite clement computations are actually dependent on h, p and k, the need
for the new research in h, p, k framework is quite clear.

(5) Our preliminary work shows that inclusion of inter-subdomain behaviors in the a pri-
ori and posteriori error estimates is important and crucial. This can be demonstrated
by considering a simple I-D case (like described above) in which the discretization
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is uniform with characteristic length h and the degree of local approximation is
p. Let the local approximation be of class C'. We wish to establish a bound on
1 - d_ IL2 In this case dw exhibits discontinuity (jump) at the inter-element

boundaries. One finds that the rate of convergence of the error in the jumps of dhdx

is lower than the rate of convergence of the errors in ddm over the interiors of the
subdomains. The same holds true for other measures as well. Thus the measures
based strictly on the open domains of the elements are in fact over estimates of the
local features of the solution that are often of great interest to the analyst (such as
stresses or fluxes across the interfaces)

(6) A clear demonstration of how the inter-element behaviors of the solution derivatives
is ignored in the presently used estimates is presented in this section. For simplicity,
consider a one-dimensional problem similar to one described earlier. Let h and p be
the characteristic length and degree of local approximation. Let •h, be of class C'.
Then, for each Q' the estimates of 11 • - d_?j IlL2 only depend upon h and p. Hencedx dx

estimates of - d IlL2 over 0T if derived solely based on 11 d _h IL2 over -e,

will naturally depend on h and p only as well as the smoothness of the theoretical
solution ýo. In this process inter-element behaviors of (d - '1h) has been completely
ignored. Currently derived estimates are based on this methodology.

(7) A global estimate of 1I d- - d_' JI'L that holds true for entire 0 T requires that wedx dx

incorporate measures of (2 - dh) at the inter-element boundaries in 1 1 d2 - d_•h I IL2

i.e. the estimates must be derived over 0T. Inter-element behaviors of the solution
derivatives normal to the inter-element boundaries is a function of h, p as well as k.
If the local approximations are of class CO (k=l), then d- (i.e. derivative of order
k=1) is discontinuous at the inter-element boundaries. When W are of class C',

dx2then "" (i.e. derivatives of order k=2) exhibit discontinuity at the inter-element

boundaries. That is a measure of (d - dLm) at the inter-element boundaries is a
function of k (as well as h and p), the order of the approximation space.

Thus, a priori and posteriori error estimates must be in h, p, k framework in which
the estimates will incorporate inter-element behavior and thereby including k, the
order of the approximation space in the estimates in addition to h and p.

4 Rediscretizations, moving meshes and solution map-
ping strategies and associated computational in-
frastructure for BVPs and IVPs in hpk framework

Appendix A contains a research report issued under 'Computational Mechanics Labora-
tory' of the Department of Mechanical Engineering of the University of Kansas, Lawrence,
KS. This report describes the research work done in this area during the third year of the
grants.
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5 Future work

The fluid-solid interaction and error estimation work presented here is preliminary. At
present, many Ph.D students are engaged in utilizing the concepts presented here to
develop a complete infrastructure in these two areas in which 1D, 2D and 3D BVPs
and IVPs will be treated rigorously without bias to their origin or fields of application.
hpk adaptive processes are also currently an area of focus. This research will utilize the
developments in a priori and a posteriori error estimation for developing methodologies
and algorithms for h, p, k adaptive processes.

The research work presented here on rediscretizations, moving meshes and solution
mapping is of critical significance in solid mechanics areas of large deformation, large
strain utilizing Lagrangian mathematical models. In such cases discretizations become
excessively distorted during evolution (IVPs) or load incrementing (BVPs) and hence it
becomes necessary to rediscretize and obtain a map of the existing solution onto the re-
discretization. Moving mesh approach permits efficient computations in which moving
micro fronts can be resolved in a macro domain. The future work in this area consists
of some algorithm developments but largely of applications in various areas of continuum
mechanics that may necessitate specific developments related to those areas. As an exam-
ple, mapping strategies for fracture, plasticity and damage mechanics in general in which
the quantities of interest are generally accumulated on incremental basis are generally
history dependent and hence may require specific developments.
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ABSTRACT

Rediscrctization, moving mesh and solution mapping approaches are presented for boundary value

problems (BVPs) and initial value problems (IVPs). When BVPs are solved using mathematical

models in Lagrangian frame of reference, the discretizations often become excessively distorted

during load incrementing. Rediscretization and a total map of the solution from the original

discretization is beneficial in such cases. In the case of IVPs, using space-time strips with time

marching, the moving mesh approach permits accurate evolutions of high solution gradient moving

fronts using computationally practical spatial discretizations. Both the rediscretization and moving

mesh procedure require mapping of the geometry of the new discretization (whole or part of the

boundary) onto the original discrctization and then mapping of the solution using this geometry

map.

Rediscretization and moving mesh approaches for ID and 2D cases are considered for local

approximation of C°,C00, Lagrange type, C0 ,C°'° p-version hierarchical as well as C",C",j ap-

proximations of higher order global differentiability. Merits of higher order global differentiability

approximations in h, p, k mathematical and computational framework are demonstrated for re-

discretizations as well as moving meshes. Inter-element flux problems present in currently used

procedures are examined for CO local approximations. Remedies are presented and their absence is

clearly shown when the local approximations are of higher classes than CO. Introduction, literature

review and scope of work is presented in Chapter 1. Chapter 2 contains developments of method-

ologies, approaches and procedures. Numerical studies are presented in Chapter 3. Summary and

conclusions are given in Chapter 4.
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Chapter 1

Introduction and Proposed Research

Moving mesh and rediscretization strategies are important and an integral part of practical and

accurate computational methodologies. The need for such approaches arise in boundary value

problems (BVP) as well as initial value problems (IVP). These strategies must be considered and

evaluated for mathematical models constructed in Lagrangian frame of reference as well as Eulerian

frame of reference.

In Lagrangian frame of reference the reference frame and the observer both are stationary

and all quantities of interest are measured in the fixed frame of reference. In this approach, the

material particles and the discrctization are the same and hence as the material particles undergo

large motion and large strain the discretization become progressively distorted due to which the

computations deteriorate and may eventually cease. In order for the computations to proceed and

to be reliable and accurate, rcdiscretization is often necessary when the mesh distortion becomes

excessive and the current state of the solution must be mapped accurately onto the rediscretization.

The mathematical models in Lagrangian frame of reference are most commonly used for solid

continua.

When the mathematical models are constructed in Eulerian frame of reference and simulated

numerically, the discretization remains fixed and the material particles flow through it. This ap-

proach is ideally suited for arbitrary large motion and large strain rates and hence is the preferred

strategy of constructing mathematical models for fluid flow, gas dynamics, polymer flow, etc. The



most significant advantage of this approach is that since the mesh remains fixed, there is no mesh

distortion. Hence, in the case of BVPs, there is very little need for rediscretizations if any. How-

ever, in many instances IVPs contain high localized gradient moving fronts such as in the case of

Riemann shock tube, combustion process with flame propagation, etc. In such cases, severe mesh

grading may be required in the zones containing the fronts but a relatively coarser discretization

can be employed elsewhere. Since the fronts propagate as time evolution proceeds, the high fidelity

of the solution in the local zone containing fronts necessitates the same level of discretization ahead

of the fronts. This often results in discretizations that are computationally impractical. For such

applications a space-time time marching approach is highly meritorious [1]. In this approach one

constructs a space time strip or a slab for an increment of time and computes a converged space-

time solution for it through h,p,k adaptivity. The solution state at the open boundary (t = to +At),

to being initial time) serves as the initial condition for the second space-time strip or slab for which

a converged solution is obtained. This process is continued until the desired time is reached. In

this strategy it is obvious that the discretization in space for the second space-time strip needs to

be of the same level of refinement as that for the time t, containing the front if high fidelity of the

fronts is to be maintained. The same holds true for subsequent stages of the evolution.

An alternative to the uniformly fine discretization in the zones containing fronts and ahead

of the front is to move the discretization at time to with the same speed as the speed at which

the fronts are moving. This automatically provides the needed refinement for the front to evolve

accurately during the subsequent time steps. An advantage to this approach is that the total

degrees of freedom (dofs) at each space-time strip or slab remain approximately the same.

From the standpoint of mathematical treatment the rediscretization and moving mesh ap-

proaches are almost identical. In both cases the following features are common.

(1) There is an existing discretization with numerical results, i.e. numerical values of all dofs and

the complete solution state are known.

(2) There is a new discretization which may be arbitrary (for the sake of generality) compared

to the existing discrctization for which the numerical solution is not known.
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(3) The geometry of the new discretization needs to be mapped on to the existing discretization

(4) The complete state of the numerical solution needs to be mapped from the existing discretiza-

tion onto the new discretization.

(5) In the case of BVPs a total map is required for the entire new discretization.

(6) In the case of IVPs with a space-time strip or slab and space-time time marching, only the

solution at the open boundary of the previous space-time strip needs to be mapped as the

initial condition for the new space-time strip.

(7) Development of measures to ensure that the solution mapping from the existing discretization

onto the new discretization accurate.

In principle, the rediscretization and moving mesh methodologies appear rather simple and straight-

forward. However, their success depends upon the accuracy of the solution mapping.

1.1 Basic Concepts, Methodologies and Literature Review

Functional analysis in Sobolev spaces and approximation theory basically constitute the mathe-

matical foundation of the currently used finite element method. In this approach, local approxima-

tions over subdomains (elements) of class Co and Galerkin method with weak form have primarily

dominated the research over the past forty years. The problems in the computational processes

associated with Galerkin method with weak form when the differential operators (for both BVP

and IVP) are non-self-adjoint and non-linear have been reported by Surana et. al. [2-41 and arc

not a subject of study in the present work. However, the role of CO local approximations in redis-

cretization and moving mesh strategies is of critical importance and its consequences need to be

examined in detail.

First, we note that when the local approximations are of class Co, the global approximation

for the whole discretization is also of the class Co. Such local approximations exhibit discontinuity

in the first derivatives of the dependent variables normal to the inter-element boundaries which

cannot be quantified in the sense of L2 -norms due to the fact that such discontinuities occur
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on sets of measure zero. Instead, their influence can only be measured in terms of how they

affect the L2-norms over the interiors of the subdomain. This is referred to as inter-element flux

discontinuity problem. When solutions with such inter-element flux discontinuities are mapped

onto a new discretization in which the inter-element boundaries do not coincide with those in

the existing discretization, new inter-element flux discontinuities are created at different locations.

Furthermore, the jump discontinuity magnitude in the map may be quite different than those in

the original discretization. This problem is well recognized [5] and there are many published work

that present various procedure to minimize such problems. Nonetheless, it is well recognized and

agreed upon that such flux problems always exist in almost all rediscretization and moving mesh

procedures. Some pertinent published work is discussed in the following.

As described above, a need for rediscretization or moving mesh method typically arises when

solving BVPs with a Lagrangian description or IVPs with an Eulerian description. A purely

Lagrangian approach is limited by its ability to maintain reliable computations when the material

and hence, the mesh undergo large distortion. It has been suggested by Hughes et. al [5] to combine

the best features of both approaches in the Arbitrary-Lagrangian-Eulerian (ALE) method. The

ALE method employs continuous rezoning of the mesh to provide both flexibility for dealing with

large distortions in the material and resolution for capturing details in the solution. This proves

especially useful when applied to fluid-structure interaction problems. The difficulty in the ALE

method is the difficulty in finding algorithms to prescribe the appropriate nodal displacements

during rezoning. The authors have noted the need for studies regarding the accuracy for such an

algorithm.

The Moving Finite Elements (MFE) of Miller [6, 7] has been developed to maintain resolution

for IVPs with sharp solution gradients or "near-shocks". In such generalized methods, nodes

automatically move to critical areas where finer resolution is needed to accurately describe the

solution. The usefulness of MFE has been demonstrated in the solution of transient Burgers

equation in which the nodes rapidly accumulate where the solution is steepest. A concern of MFE

is the possibility of overturned solutions or shocks, as discussed for convection diffusion phenomena

by Baines [8]. Baines has reported great success in solving difficult problems when employing
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appropriate penalty functions. The inter-element flux problems inherent in these procedures due

to Co local approximations remain unresolved.

1.2 Scope of Present Research

In the present work, rediscretization and moving mesh procedures are developed, evaluated and

numerically demonstrated in h,p,k mathematical and computational framework [1-4]. In this frame-

work, the order k of the approximation space is an independent computational parameter in addition

to h, the characteristic discretization length and p, the degree of local approximation. The param-

eter k defines global differentiability of the approximation. Thus, the local approximations are

considered in Hk'P(•2) scalar product spaces containing approximation functions of degree p yield-

ing global differentiability of order (k - 1), i.e. global approximations of class Ck. Methodologies

and procedure are developed (Chapter 2) for: (1) mapping the new discretization onto the existing

discretization (2) mapping of the solution from the existing discretization onto the rediscretization

(3) measures that ensure the accuracy of the mapped solution for 1D and 2D BVPs as well as

IVPs in h,p,k framework. Numerical studies for 1D and 2D BVPs and ID IVPs are presented in

Chapter 3. A summary of the work, conclusions and some directions for future work are presented

in Chapter 4.
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Chapter 2

Rediscretization and Moving Mesh

Methodology: Mathematical and

Computational Developments

This chapter contains development of mathematical and computational methodologies for redis-

cretization and moving meshes as well as developments of the measures to assess the validity and

accuracy of the proposed approach. First, we consider rediscretizations associated with BVPs. For

the sake of simplicity, we consider a BVP in one dependent and independent variable (an ordinary

differential equation). One-dimensional axial deformation of an elastic rod, convection-diffusion

equation and Burgers equation are a few examples of such BVPs.

2.1 Approximations of Class C0, Lagrange Functions, 1D Case

Let

A0¢-f=0 in Q =(0, L) (2.1)

be the BVP (with some boundary conditions). Let the differential operator be of order 2m and also

let the theoretical solution of (2.1) be of class Ck(Q), k > 2. A finite clement formulation of (2.1)

may be constructed using any appropriate integral strategy based on the nature of the differential
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(a)

rediscretization: ml

1 2 3 4 5

(b)

Figure 2.1: Discretization ml (a): current mesh and rediscretization m2 (b): new mesh

operator A [2]-[4]. Let f2r 1l be a four-element discretization: ml (Figure 2.1) for obtaining a

numerical solution of (2.1), in which r is a subdomain (or an element) such that

n = U-ani (2.2)
e

Let m1o,,(nQT1 ) be the global solution (approximation) for f2T1, Then:

Ml U -m e -fe 1

1= U C)( hr, 1) (2.3)
e

in which m1(2) is the local approximation for a subdomain Qp. For the sake of simplicity

we assume the p-level to be two and the approximation functions to be of standard Lagrange type

implying the function values at each node are the nodal degrees of freedom and 'loh and r,'h¢$

arc of class Co. Let each element of the discretization be mapped in the natural coordinate space

ý with local node numbers 1,2 and 3 and let mnxi; i = 1, 2, 3 to be the global coordinates of the

nodes of the element (Figure 2.2). Let

3
mlXe(•, ?7) = Z.( , I?)mlxz (2.4)

i=1



C- ----- ' O--x------- -

1 2 3 1 2 3

..................... ko ..... ..............

(a) element @ of C2T in (b) map of element 0 of
physical coordinate space •Ž',l in natural coordinate

space

Figure 2.2: Element e and its map in natural coordinate space

define the mapping of element e of ra with domain in the natural coordinate space.

Figure 2.1 (b) shows a four element rediseretization (m2) of the domain n in which the interior

nodes (including inter-element boundaries) do not coincide with the original discretization m, (for

the sake of generality).
Let M1Oh (fTf e h a of -l -

)2 ) be the map over the discretization m2 such that

m2o -fT r2e-

m,(am2) U Um e O(Qm2) (2.5)

in which m 2o,1 (CM2 ) is the approximation of ¢ over T. 2 , an element e of the discretization m2.

Determination of m
2  

-TTl(fQ2 ) over fIT 2 from m'1,(!ýTl) over f2ml is a two step process. First we

determine the locations of the nodes of mesh m2 onto mesh ml. We refer to this step as mapping

of rediscretization m2 onto discretization ml. In the second step we determine m2 M2 ) from

M1 h(nTl) using the mapped geometry. Details are described in the following.

2.1.1 Mapping of Rediscretization (m2) onto Original Discretization (ml)

First, we note that the Cartesian coordinates of nodes of rediscretization m2 arc known. Secondly,
our ultimate goal is the determination of m2 h(QT 2 ) from mh• ( iT" This essentially requires the

determination of the numerical values of the nodal degrees of freedom for each node of m2. Once
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thc nodal dofs for m2 arc known, m2zQee 2 ) is defined through local approximations and hence

m
2 q5, •ThM2 ) by (2.5). We proceed as follows.

(a) Consider an element e of m2 with domain k'2 and nodal coordinates m2

(b) Determine the elements in discretization ml containing these nodes. Let m2 Xý, i = 1, 2, 3 lie

in elements p, q and r of T respectively.

(c) Determine the ý coordinates in elements p, q, r for the locations m2 Xý, i = 1, 2, 3. Using the

geometry mapping for elements p, q, r of l we have the following in which m2. , mlXP

MlXq, ml)X are known x-coordinates.

3
m

2 X = E - mlXP (2.6)
i=1

3
m 2 X E 'Ni(O)MlX (2.7)

i=1

3

m
2

X e = E ZN ()mlxr (2.8)

i=1

Each of the (2.6)-(2.8) are quadratic expressions in ý and hence we can determine a pair of

values from each of (2.6)-(2.8). Let (nlýP)_, i = 1, 2; (m1 q), i = 1, 2; and (ml"r)i, i = 1, 2 be

the pair of values of ý determined from (2.6)-(2.8) respectively. Discarding those outside the

range [-1, 1], we obtain the ý coordinates (ml'), (in1p)6 and (ml3)e for the x-locations.

(d) Using the procedure described in (c), we can determine the elements of fT1 containing each

node of the elements of •T2 and their corresponding ý locations in the elements of MI,

2.1.201appinTofOTl -To-Tm2 -T

2.1.2 Mapping (m) onto M i.e. Determination of m n(•T2 )

For an element e of Q, 2 with the map of its nodes in elements p, q and r of Qmnl and their _-

coordinates determined in (c) of Section 2.2.1, we proceed as follows. For elements p, q and r of

9



fl the local approximations are given by

3
M hl°m(1 )= Nj()"3'O; i =p,q,r (2.9)

i=1

where ml¢.; j = 1, 2, 3 are nodal dofs for element i of discretization ml (known function values in

this case). We note that

m I.pt(p = m2M (2.10)

mo(Phy mljý=(_ •1)ý = 20

h m=m 2) 2 (2.11)

ml r-r= m203 (2.12)

Using (2.9)-(2.12) numerical values of the nodal dofs m2¢,, m20, m2¢ of element e of discretization
-T

mrn2 are obtained. This procedure is repeated for each element and thus eventually all numerical

values of the dofs for each node of the discretization OTr2 are determined. Now using local approx-
m2 r2eiesarlse detrmned. Now usngloavep

imations for each element M2n2 the solution m h is established and we have

3rn20,e (fe N, E ý r-2•
I2h•e (M2Q =N(•)m 5 (2.13)

i=l

and
m20, !T Umo

C 2(aT) = U (2.14)

e

Thus we have the map O
2 lh(TM 2 ) onto £M2 from ml0h(QT . onto m.1T

Remarks

(1) Many issues need to be addressed regarding the validity and accuracy of the solution mapping

procedure described above.

(2) Extension of this procedure to the CO p-version hierarchical local approximations is needed.

(3) Extension to higher order continuity local approximations is required.

(4) Measures to assess the accuracy of the mapping procedure need to be established.
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(5) Extensions to 2D and 3D.

2.1.3 Measures of the Accuracy of the Mapping

In the development presented here, there are some specific points to be noted that may be helpful

in further understanding the behaviors of m'10 and m2 
1, and development of the measures of

accuracy of r2 0h'

(1) mlo • and m ( 2 ) are of class C 2 due to p-level of 2, however mlo'(!Q' ) and

m2,ofe - O m 1 -,(T (l T C2 f
m2 Q('e2 ) are of class Co. Thus, .1(QT1 ) and ml4h(•1n) are of class over M=

int(Ue n'1)- and qT 2 = int(U, f2'2) but of class Co at the inter-element boundaries.

(2) Since m1o, and M20', are of class CO globally, inter-clement discontinuities (jumps) exist in

their first derivatives normal to the inter-element boundaries in both discretizations. Loca-

tions of the jump discontinuities are different in ml and m2. The magnitudes of the jump

discontinuities may also differ between ml and m2.

(3 Bsd n(1 ad(2,dir L2 di_____ L(3) Based on (1) and (2), d(-'Oxh•) and d'-2 Oh) i - 0,1, in general may be the first

good indicators regarding the reliability of mapping. Their agreement between ml and m2

discretizations indicate a good mapping. Lack of agreement, on the other hand, points out

the existence of flux discontinuity problems.

(4) When to map: (3) raises a very significant question, i.e. when to map. We elaborate on this

point in the following and provide some clear guidelines.

(a) Since in the above discussion the approximations are of class CO, the inter-element jumps

in the first derivatives exist. However, if the theoretical solution is sufficiently smooth we

expect weak convergence of the class Co to C1 upon h, p refinements. In such converged

solutions, the jump discontinuities are no longer significant hence we expect d'(-1¢h)

a n dx h )L 2

and d(- 2 Oh 1, 2, to be in relatively good agreement.

(b) However, when ml"h is not weakly converged, jump discontinuities at the inter-element

boundaries are significant. In such case, mapping the solution to rediscretizations is not

a preferred strategy.
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(c) Based on (a) and (b), it is rathcr straight-forward to see that when

1m1 - khhL - 0 (2.15)

the map of m'10 to m2
0, is unique and so are their corresponding L2-norms. Likewise,

when
d(md(1h) _de5

-- do 0 (2.16)
dx dxL.

the maps of d(mlOh) to d(-
2 'h) are unique and so are their corresponding L2 -norms.

dx dx

(d) It is rather clear from (b) and (c) that before attempting to map the solution '10h on
-2T

frm2, it is preferable to achieve weak convergence of m"Oh to ¢. This eliminates the

mapping errors due to the fact that m'1 1  * €. Weakly converged solutions for higher

p-level Lagrange elements (with function values as nodal dofs) shall permit good maps

onto Qm2 in which higher order global differentiability is possible to preserve in the weak

sense.

2.2 p-version Hierarchical Local Approximations of Class C0: 1D

case

Consider discretization ml of Figure 2.1 in which the elements are three node p-version CO hierar-

chical elements with p-lcvel of p4. In this case '10h(f2Trl) is of class pý over QT1 int(U6 e 1) but

is of class CO at the inter-element boundaries. Mapping of Qm2 onto M follows in the same pro-

cedure described in Section 2.1.1. However, mapping of ml - ont 2 to obtain Oh T2 )

is somewhat different than the procedure discussed in section 2.1.2. We note that the dofs at

the end nodes are function values whereas at the mid-side node of each element the dofs are &--r

2, ... ,pý. Thus, at each mid-side node of elements Q'2m numerical values of d i needs to be

obtained from the elements of discretization . This cannot be done accurately due to the fact

that '10h is of class Coglobally.

This situation is not as hopeless as it might appear. A careful examination of the derivation
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Figure 2.3: CO p-version (a) non-hierarchical and (b) hierarchical Lagrange elements

of CO p-version hierarchical basis functions leads to a resolution. Figure 2.3 shows CO p-version

non-hierarchical Lagrange elements and the corresponding p-version hierarchical Lagrange elements

derived from them for various p-levels. Let us assume that mnl"h(QTl) is a converged CO solution

for discretization ml at p-levels of pý. It is desired to map this solution onto rediscretization m2.

This obviously requires nodal values of 0 at the non-hierarchical nodes and -; i - 2,... ,pý at

each of the hierarchical nodes. Since the CO p-version hierarchical approximation functions are

derived from the corresponding non-hierarchical Lagrange element with (pý + 1) equally spaced

nodes between -1 <_ < 1, we can proceed as follows.

(a) Consider QC of M2 with the end nodes located at x and 21 X3*

(b) Determine elements p and q of •nX containing these nodes with the corresponding values of

i, .e. (,2jP)c and (r24q)e.

(c) Consider (pý + 1) equally spaced points between m2X' and m2 X• and determine their • coor-

13



dinates in elements p and q of ff
MIT

(d) Use the local approximations of elements p and q of nT 1 and the ý coordinates determined

in (c) to obtain function values at (pý + 1) equally spaced points.

(e) Convert these (pý + 1) function values to dý; i = 2,... ,pý, at the 2 coordinate location.

This completes the map of m¢(QlT) over n' 2 of Qn 2. This procedure is repeated for each

element of grn 2 to obtain m h(m).

Remarks

(1) When mlh o l5(f) of class C0 is weakly converged to good accuracy, H _ 0 and

the proximity of m loh to the theoretical solution 0 is established.

(2) Based on (1), computations of d'O for the hierarchical nodes of f2T using function values at

(pý + 1) equally spaced points between the end nodes of each element of .~2 appear to be a

reasonable proposition.

(3) In this procedure, accuracy of the function is the best in the map and it deteriorates for

progressively higher order derivative hierarchical dofs.

(4) This procedure is expected to yield better accuracy of the map m2 Oh as compared to the

procedure in which de for the hierarchical nodes are directly computed using mlo,,(fTml).

(5) Numerical studies related to this procedure are not presented in this thesis and will be a

subject of future study.

2.3 p-version Approximations of Higher Classes (Ci; j 1,...): 1D

case

Consider discretizations ml and m2 shown in Figure 2.1 in which the local approximations for

each element can be of higher class. Consider "Oh (OTl) of classes CJ•( 1 ); j = 1, 2,... in scalar

product spaces Hk'P(0 1 ) in which p = 2k - 1 and j k k - 1. p-levels p = 2j - 1 are the minimum

p-levels for j = 1, 2,.... At these p-levels the hierarchical center node has no degrees of freedom.

14



Let m 2 be a rediscretization (Figure 2.1 (b)) in which the locations of the interior nodes of the

mesh are not coincident with those in discretization ml.

Mapping of discretization m 2 onto mi follows the same procedure as described in Section 2.1.1.

For mapping of the known solution onto fT2 to obtain 2
Oh (q m2 ), we consider the

following two cases.

(a) Let the p-level be p = 2j - 1 where j is the order of continuity. In this case, only the end

nodes have dofs. We note that since m 05 (fT 1) is of class cj in fT1 but of class p in QTm1, i.e.

at the inter-element boundaries the solution class is c3 but in the interiors of the element the
-T

solution class is cp. When mleh is mapped onto •m2 using the procedure described in section

2.1.2 we expect c3 global differentiability features to be preserved. Consider the following two

cases.

(i) Discretization ml (i.e. h and p) is such that 1eh1, is not a converged solution

(ii) Discretization ml is refined sufficiently with adequate p-levels to obtain a converged

solution mle before mapping it onto m2"

The convergence is assumed to be in the appropriate norms in the corresponding approxima-

tion spaces. Consequences of (i) or (ii) are discussed and illustrated numerically in Chapter

3.

(b) Consider p-levels pý > 2j + 1 where j is the order of continuity of ml 4 h (•QT)• 1 . In the

case the hierarchical center node of each element in both discretizations has dofs that are

di, i = 2j - 1,... ,pý. We consider the following two approaches for mapping ml -(fT1 )

onto n• 2

(i) Obtain numerical values of • for the hierarchical nodes of QT2 directly using local

approximations for the elements of discretization Qm. In this case we expect the same

type of contamination in m2 , as described for CO p-version hierarchical approximations

even when the solution ml, is converged. This obviously is due to the fact that global

differentiability of mle, is lower than what is required for obtaining numerically accurate

values of hierarchical dofs.

15



(ii) Use the alternate procedure described in Section 2.1.2 which employs corresponding

Co Lagrange configuration to obtain . In this approach higher accuracy of m20, is

expected due to the fact that only converged function values are utilized in the compu-

tations of hierarchical dofs.

2.4 Two-dimensional Case: Rediscretization

Consider discretizations ml and m2 of Fig. 2.4. Let ml be the original discretization for which

the solution ml'Oh•T rl) is known and m2 be a rediscretization for which m2
qh(QT 2 ) a map of

M1Ohh(!rTl) is desired. Regardless of whether the local approximation of type Co Lagrange, CO

p-version hierarchical or that of higher order global differentiability, the mapping of the geometry

of rediscretization m2 onto ml remain the same. Hence, we consider this first.

2.4.1 Mapping of Rediscretization m2 onto discretization m,

Let each element of the discretizations ml and m2 be mapped onto a two-unit square natural

coordinate space ý-77 with the origin of the coordinate system located at the center of the square.

For simplicity, we assume the shape functions in the mapping to be quadratic. For a typical element

e of ff, we can write
n

MlXe (ý' 77) ý E i(,7)MY~x

i= n (2.17)

Mnlye(ý, 77) = ml, ry

i= 1

To determine the map of 2 onto 1,, we follow the procedure described in Section 2.1.1 for the

1D case. The basic steps are described in the following.

(a) Consider an element e of •2.2 with domain OmQ2 and nodal coordinates (m 2 Xe, m2 xe); i =

1,..., n, n being the number of nodes.

(b) Determine the elements in the discretization fmT containing these nodes. Let p, q, ,... be

such elements.

16



(c) It is sufficient to consider a typical node of element k. 2. The procedure described for this

node can be repeated for the remaining node. Consider node 1 with coordinates (m2x1,m 2 y1).

Let these this node be located in element p of Qm. Determine the ý, rj coordinates in elementp o telcainrn2xe m2 ye) p f jT1

for the location Using the geometry mapping (2.17) for element p of 1 we

have n m72P
M2Xe M, 4~7 m

n-- (2.18)
M2 Y1' YA 2ý7) t

lYIP

n2=1

in which (m2 xm2 ye), (m1xpzm2 y'); i = 1,... ,n are known coordinates. Equations (2.18)

are quadratic simultaneous equations in • and r]. These arc solved numerically using Newton's

linear method. This yields two roots, i.e. two pairs are ý and 71. The values in the range

[ii7] = [-1, 1] x [-1, 1] are retained while the others arc discarded. Let ((mI•)e,(mlv)e)

be the values of C and q7 for location (m
2
X,,m

2 y,) in element p of Q2m . Using this procedure

the (C, 77) locations for all nodes of 0'.2 are determined in elements p, q, r,... of Q2T1. Let

(() ( ),2 ,( 2)e),'". be the desired C, '7 coordinates.

(d) This procedure described in (c) is repeated for each element of !2, thus establishing a map
of-T -ýT

of n2 onto .1.

2.4.2 Mapping Of "Oqh (OT 1 ) onto OT 2 , i.e. Determination of Solution Map

m2 -( T

It is sufficient to describe the solution mapping strategy for a typical element e of •m2 with its

domain !k,2 and the C, 77 coordinates of its map in elements p, q, r,... of (determined in (c) of
Section 2.4.1). For a typical element i of f-n the local approximation is given by

nd

ml•(•'7) = J m1i (2.19)

j=1

in which ml"10 are the nd dofs for element i of fT . Consider the following types of local approxi-

mations for typical elements 0'. and !r 2 of fQ and f
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(i) Co local approximations of Lagrange type:

Tensor product of ID Co Lagrange functions can be used in ý, q to generate the approximation

functions for such elements. For such elements, each node of every element has only function

values as a dof. Hence, using local approximations of the type (2.19) for the elements of 1

and the ý, 17 coordinates of the nodes of the elements of •T 1 , the function values can be easily

determined. This procedure is exactly parallel to that described for ID Lagrange Co elements

in Section 2.1.2.

(ii) C0,0 p-version hierarchical approximations:

These approximation functions can be derived using products of 1D p-version hierarchical

basis functions in ý and 77. In this case the corner nodes are non-hierarchical nodes and have

function values as dofs. Mid-side and center nodes on the other hand are hierarchical nodes

and contain derivatives of the function with respect to ý and 7 as dofs [9],[10]. We can proceed

as follows and possibly develop two strategies.

(a) In the first case, dofs at the non-hierarchical nodes are determined using the approach

described in (i). The hierarchical dofs arc also determined using local approximations

for the corresponding elements of .�n' The problems in this approach are exactly the

same as those in the 1D case in Section 2.2. It appears that in this approach, good
maps of mi - T -to m201-(T -20h(fm i

o h(Qml) onto fm 2 , i.e. M (fM 2 ), are not possible. That is, m2 T 2 ) is

always contaminated due to inaccurate values of hierarchical dofs, which essentially is a

consequence of limited global differentiability of ml1,(f 1 ) (Co in this case).

(b) Non-hierarchical dofs, i.e. function values, are determined in the same way as in (a), but

hierarchical dofs are determined using their corresponding Co Lagrange configurations

as discussed for the 1D case in Section 2.2. This approach appears meritorious and will

be investigated further in future work.

(iii) p-version Approximations of Higher Classes c0J; i,j = 1, 2....

In this category we consider two different types of local approximations. In both cases,

element nodal configuration is that of standard nine nodes.
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(a) C2'J p-version higher order continuity approximations: rectangular elements

If the element shapes in the physical coordinate space are rectangular and if the coor-

dinate axes x, y are parallel to ý, 77, then the approximation functions for these elements

can be generated using tensor products of ID C', Ci type p-version approximations in

ý and 71 natural coordinates [10].

(b) Cij p-version higher order continuity approximations: distorted elements in the physical

coordinate space

When the element shapes in the physical coordinate space are distorted, the tensor prod-

uct cannot be utilized to determine approximation functions. In this case, an alternate

procedure [11] is necessary.

Remarks

(1) The dofs at the corner nodes are function values as well as derivatives of the function with

respect to ý and q depending upon the order of continuity in x and y.

(2) The dofs at the corner nodes for elements of type (a) and (b) are not the same, the major

difference being that all dofs at the corner nodes of type (a) cannot be transformed under

pure rotation whereas those of type (b) cannot be.

(3) From (2), it is obvious that the dofs at the mid-side and center nodes of elements of type (a)

and (b) are different as well.

(4) A comprehensive treatment of the mapping procedures for these elements are beyond the

scope of this thesis and will be a subject of future study.

2.4.3 Present Study

In the present study we consider C 1,1 local approximations in which p-levels in the ý and r7 directions

are minimally conforming and the element shapes are rectangular with the ý and 77 axes parallel

to the x and y axes. In this case, p-levels in both 6 and q7 are three. There are nodal dofs at the

hierarchical nodes. The dofs at each of the corner nodes are ,, d 2 and 2€O y. We also consider

p-levels beyond minimally conforming in which case there are dofs at the mid-side and center nodes.
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Remarks

(1) Computation of 0, LO, and 92 at the non-hierarchical nodes of • 2 presents no problem due to

global differentiability of ml h(QTl) of class CM in x and y. However, accurate determination

of -ý€ requires ml' h to be of class C2 in x and y. Hence, in this case when ml1 h is mapped

-m21 -2e may be corrupted. Numerical studies presented in chapter 3 demonstrate the

consequences of the inaccuracies in at the corner nodes of fý2.

02

(2) Alternate methodology is needed to determine accurate maps of 9-0 ."Use of Lagrange Co

configurations is a possibility.

(3) Numerical studies for p-levels beyond minimally conforming are also presented in Chapter 3.

2.5 Rediscretization for Non-linear BVPs

The mapping procedure may result in inaccurate maps of the solution onto rediscretization due

to either using non-weakly converged solutions or due to inaccurate maps of the hierarchical dofs.

This is critical when the differential operators are self-adjoint or non-self adjoint due to the fact that

in both cases the differential operators are linear and there are no straight-forward mechanisms to

improve the accuracy of the mapped solution. When the differential operators are non-linear, the

inaccurately mapped solution can be used as a starting or initial solution for the rediscretization

and Newton's method with line search can be employed to obtain the improved solution for the

rediscretization. This solution so obtained is expected to be identical to the solution that one

would obtain if new computations were done for the rediscretization. This feature is powerful

in the sense that it permits us to eliminate the mapping errors in the solution map onto the

rediscretization. Numerical studies are presented using steady-state Burgers equation as a model

problem to demonstrate this feature for non-linear BVPs.
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2.6 Moving Meshes for 1D IVPs

In many IVPs, isolated high solution gradients (fronts) exist in relatively small portions of the total

domain which propagate as evolution proceeds in time. In such cases, a highly refined discretization

may be necessary in the portion of the domain containing these solution gradients, but a relatively

coarser mesh may be employed elsewhere. However, due to the fact that the zone of high solution

gradient advances in time during evolution, it becomes necessary to employ the same level of

discretization ahead of the fronts if the fronts are to be resolved accurately. This gives rise to

spatial discretization that may be computationally impractical. The Riemann shock tube is a

classic example of these types of problems.

In such IVPs, an alternate strategy may be employed to overcome the problem of impractical

discretizations. The moving mesh approach is one such option. In this work, we consider space-time

integral forms of the IVPs over a single space-time strip in which the space-time integral forms are

space-time variationally consistent and employ a space-time time marching process to compute the

evolution state until the desired time is reached [1]. The space-time strip for the current increment

of time is advanced in space for the subsequent increment of time with the same speed as that of

the propagating front without rediscretization. This process is continued until the desired time is

reached. Details are presented in the following.

Figure 2.6 shows a single space-time strip (1D IVP) for an increment of time At for to < t <

to + At, to being the initial time which can be conveniently assumed to be zero. Consider the first

space-time strip discretization (Figure 2.6 (a)). There are four distinct zones A-D. Zone B contains

the initial disturbance defined by initial conditions. The spatial discretization in this zone is such

that the initial front is resolved accurately for a chosen At, p-levels in space and time as well as

k = (kj, k2) orders of the approximation spaces in space and time. Zone C has the same level of

refinement as zone B, but its length in space is determined based upon the speed of propagation

of the front in zone B at time t = to. A converged solution of desired accuracy is computed for

the first space-time strip. During the evolution, the front moves from zone B to C with the desired

resolution and accuracy. Hence, in zone B there is no need for the same level of refinement for

the next increment of time. Thus, for the second increment of time the discretization for the first
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(b) First space-time strip

Figure 2.6: Moving mesh space-time strips for first and second increments of time: F indicate front
location

increment of time is employed but is moved in space by a fixed distance determined by the speed

of propagation of the front in the x-direction. Figure 2.6 (b) shows the space-time strip for the

second increment of time (to + At < t < to + 2At).

Computation of the solution for the second space-time strip requires determination of initial

conditions on boundary 2 F2 of the space-time strip from the solution on boundary 1F4 of the first

space-time strip, i.e. ' r401, from 1 F4 of the first space-time strip needs to be mapped onto 2 F2 of

the second space-time strip (2F2Oh). This problem is similar to rediscretization except that in this

method the map of the existing solution is only required from one boundary of the existing space-

time strip onto another boundary of the next space-time strip as opposed to a complete map for

the whole discretization of the space-time strip. Thus, all of the concepts and procedures presented

for rediscretization for 2D BVPs are applicable here as well.
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Remarks

(1) It is important to note that since the mapping of the solution and its accuracy depends

upon the nature of the local approximations (Co Lagrange, CO p-version hierarchical, higher

order continuity, etc), care must be taken to measure the accuracy of the solution map onto

boundaries i+iF 2 from boundaries iF 4 (i being the space-time strip number) before time

marching is commenced. Corrupted solution maps will obviously result in faulty evolution

and may even cause the computations to cease.

(2) The thrust of the work presented here has been development of methodologies, concepts and

their validity. Applications of these concepts to complex IVPs will be the subject of future

work.
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Chapter 3

Numerical Studies

In this chapter we present numerical studies for rediscretization for 1D and 2D BVPs (self-adjoint,

non-self adjoint and non-linear differential operators) and moving meshes for ID IVP. Numerical

studies are organized as follows.

(a) Onc-dimensional BVP using steady-state ID convection diffusion equation as a model prob-

lem.

(al) Local approximations of class CO Lagrange type.

(a2) Co p-version hierarchical local approximations.

(a3) Local approximations of type CJ; j = 1, 2, ... with minimally conforming p-levels.

(a4) Local approximations of type CJ; j = 1, 2, ... with p-levels higher than minimally con-

forming.

(b) Two-dimensional BVP using Poisson's equation as a model problem.

(bl) Local approximations of class C0'0 Lagrange type.

(b2) C 1' 1 local approximations with minimally conforming p-level as well as p-levels higher

than minimally conforming.

(c) One-dimcnsional non-linear BVP using ID steady-state Burgers equation as a model problem.

(d) One-dimensional IVP using ID transient convection diffusion equation.
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3.1 One-dimensional BVP: Steady-state Convection Diffusion Equa-

tion, Local Approximations of Class C' Lagrange Type

(Pe = 10)

Consider

deb 1d 2 ¢
-= 0 in Q =(0,1) (3.1)

dx Pe dx 2

with

0(0)=1 and 0(1)=0.

A theoretical solution of (3.1) can be found in reference [9]. The differential operator in (3.1) is

non-self adjoint. We consider a least squares formulation of (3.1) using auxiliary variable T = • so
dx

that solutions of class Co can be considered. The integral for in this case is variationally consistent.

We consider a low Pe, say 10, for which the solution is highly diffused and free of sharp fronts and

hence has good smoothness. We consider a tcn-element uniform discretization with p-level p = 1

(original discretization: inl). The rcdiscretization considered here is a twelve-element uniform mesh

(m2) with p-level p = 1. We consider the following.

(i) Computation of the solution for the original ten-element discretization: '10h (original solu-

tion).

(ii) A map ml'1, onto rediscretization m2: '201h (mapped solution).

(iii) Computation of a new solution for the rediscrctization m2: (,
2

01')new (new solution).

Due to coarser discretization and low p-level, ml'h has significant error. The least squares functional

I, dofs, p-levels and L2-norms of the errors are given in Table 3.1. The purpose of this study is

to show how the solution errors map onto the rediscretization when the original solution is not

weakly converged. Figures 3.1 and 3.2 show graphs of 0 and L versus x. Solution 0 from all three

cases (original, mapped and new) are in disagreement. We note that the locations of the d jump

discontinuities shift and their magnitudes change as well. The mapped solution is not in agreement

with the new solution, which is the correct solution for the rediscretization m2. The study clearly
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shows the problems associated with mapping unconverged solutions from the original discretization

onto the rediscretization. The solution errors in ml and m2 are not the same. The inter-element

flux problems in ml shift to different locations in m2 with different magnitudes. Mapping such

m101 is of little value, if any.

We now consider a highly refined uniform discretization ml of 1000 elements with p = 1 and

obtain '10ch and its map onto a rediscretization containing 1200 uniform elements (m2). We also

compute a new solution for the rediscrctization by revolving the BVP. Figures 3.3 and 3.4 show

graphs of 0 and LO versus x. In this case, the solution ml'1 1 is sufficiently converged (weakly) anddx

thus all three solutions arc their derivatives are in excellent agreement. No visible inter-element

flux problems exist in any of the solutions. Table 3.2 shows details of least squares error functional

I, dofs, error norms, etc.

This study shows the importance of the weak convergence of ml' 1, before mapping it onto the

rcdiscretization m2. Weakly converged solutions when mapped onto the rediscretization do not

exhibit significant flux problems. In this study, p = 1 has been used. Similar findings also hold for

higher p-levels when the local approximations arc of CO Lagrange type.

Table 3.1: Convection diffusion equation (BVP): Co Lagrange local approximations.

Solution Elements p-level I 0-11L d(-r) dd L2

Ml h 10 1 0.278391e0 0.130565e0 0.800277e0
m2Oh 12 1 - 0.134777e0 0.799217e0

(rn2 oh)6new 12 1 0.215044C0 0.100951e0 0.658679e0

M1 Oh 1000 1 0.416684e-4 0.196047e-4 0.645575e-2
m29 1200 1 - 0.202418e-4 0.552887e-2

(m2• ~ew 1200 1 0.289365e-4 0.136146e-4 0.537967e-2
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Figure 3.1: Convection diffusion equation (BVP): 0 versus x for original, mapped and new solutions.
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Figure 3.2: Convection diffusion equation (BVP): • versus x for original, mapped and new solu-
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Figure 3.3: Convection diffusion equation (BVP): 0 versus x for original, mapped and new solutions.
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3.2 One-dimensional BVP: Steady-state Convection Diffusion Equa-

tion, Local Approximations of Co p-version Hierarchical Type

(Pe = 10)

We consider the BVP (3.1). We consider two different original discretizations.

Case 1: A ten-element uniform original discretization and a twelve element uniform rcdiscretization

both at p-levels of 5, 9, and 15.

Case 2: A 1000-element uniform original discrctization and a 1200 element uniform rediscretization

both at p-levels of 5, 9, and 15.

For both original discretizations, solutions are computed at p-levels of 5,9 and 15 and then mapped

onto the corresponding rediscrctizations. Also, new solutions are computed for the rediscretizations

by resolving the BVP. Figures 3.5 - 3.7 show graphs of 0 versus x for p = 5, 9, and 15 for case

1. The graphs of L versus x are shown in Fig.s 3.8 - 3.10 for case 1. Figures 3.5 - 3.7 show thedx

original and new solutions in good agreement at all three p-levels, however the mapped solution
differs (maybe not significantly). The graphs of • versus x in Fig.s 3.8 - 3.10 clearly show excellent

agreement between the original and new solutions but the mapped solution differs significantly and

shows significant inter-element jumps in L at all three p-levels. This is due to inaccurate maps of

the hierarchical derivatives which progressively deteriorate as the p-levels and hence, the orders of

the derivatives increase. At all three p-levels '10h is converged, but the inaccuracies in the maps

are due to inaccurate mapping of the hierarchical dofs. Table 3.2 gives mesh details, I, and various

L2-norms.

The inaccuracies in the map shown above can be minimized with mesh refinement (as in case

2). Figures 3.11 - 3.13 show graphs of 0 versus x and Fig.s 3.14 - 3.16 show graphs of L versusdx

x for all three p-levels. The results show excellent agreement between all three solutions and their

derivatives at all three p-levels. Even though the L2-norms differ for 0 and • for the mappeddx

solution, for all practical purposes (as shown in the figures) the maps arc generally good. In this

case, we have purposely used an exceptionally refined mesh to demonstrate that the inaccuracies
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in the maps of the hierarchical dofs can indeed be minimized by mesh refinement.

Table 3.2: Convection diffusion equation (BVP): Co p-version hierarchical local approximations.

Solution Elements p-level I 110h - q5IIL2 -(' Lx
mlh 10 5 0.432714c-9 0. 104665e-6 0.207345e-4

12 5 0.615416e-2 0.2360702e0

(m2U~n7 12 5 0.728349e-10 0.357703e-7 0.851514e-5
Ml7 10 9 0.728966e-21 0.752119c-13 0.269668e10

m27 12 9 0.615716e-2 0.236839e0
(rn2¢[Y)ew 12 9 0.286326e-22 0.125148e-13 0.534643e-ll

MIlOh 10 15 0.944106e-22 0.252814e-13 0.914020c-ll
m27 12 15 0.615718e-2 0.409828e-2

___2__hn_ 12 15 0.205984e-21 0.299340e-13 0.132347e-14

_ 1000 5 0.296098e-23 0.400021e-12 0.367759e-11
m2Oh 1200 5 0.623740e-6 0.236693e-2

(rn5hne 1200 5 0.551350e-21 0.109110e-10 0.443337e-10
M1~I 1000 9 0.6334062e21 0.106185c-10 0.463778e-10
r 1200 9 0.623748e-6 0.236693e-2

(f2)hne 1200 9 0.926781e-21 0.139454e-10 0.584280e-10

ml~h 1000 15 0.247810e-17 0.147141e-10 0.156245c-8
m2 1200 15 0.789122e-6 0.409828e-2

(m2ihin7 1200 15 0.141826e-17 0.297155e-ll 0.116684e-8
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Figure 3.5: Convection diffusion equation (BVP): 0 versus x for original, mapped and new solutions.

34



1F

0.9

0.8 Original mesh

C0, p=9, 10 el.

0.7

Rediscretization

0.6 CO, p=9, 12 el.

& 0.5

0.4 m2O -

(m2 4h) new ---------0.3

0.2

0.1

0 I I I I

0 0.2 0.4 0.6 0.8 1

x

Figure 3.6: Convection diffusion equation (BVP): 0 versus x for original, mapped and new solutions.
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Figure 3.8: Convection diffusion equation (BVP): dc versus x for original, mapped and new solu-
tions.
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Figure 3.9: Convection diffusion equation (BVP): d- versus x for original, mapped and new solu-
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Figure 3.10: Convection diffusion equation (BVP): d versus x for original, mapped and new solu-
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Figure 3.11: Convection diffusion equation (BVP): 0 versus x for original, mapped and new solu-
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Figure 3.12: Convection diffusion equation (BVP): 0 versus x for original, mapped and new solu-

tions.
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Figure 3.13: Convection diffusion equation (BVP): ¢ versus x for original, mapped and new solu-
tions.
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Figure 3.15: Convection diffusion equation (BVP): 9 versus x for original, mapped and new solu-
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3.3 One-dimensional BVP: Steady-state Convection Diffusion Equa-

tion, Local Approximations of C3; j = 1, 2, 3,4 (Pe = 10)

In this case we consider the original discretization to be a five-element uniform mesh (ml). The re-

discretization consists of s seven-clement uniform mesh (m2). In the studies, we consider minimally

conforming p-levels for each class as well as p-levels higher than minimally conforming. Results are

presented in the following figures and tables.

(a) C1, p = 3: Figures 3.17 - 3.19, Table 3.3

(b) C1, p = 15: Figures 3.20 - 3.22, Table 3.3

(c) C2, p = 5: Figures 3.23 - 3.26, Table 3.4

(d) C2, p = 15: Figures 3.27 - 3.30, Table 3.4

(e) C3, p = 7: Figure 3.31, Table 3.5

(f) C3, p = 15: Figure 3.32, Table 3.5

(g) C4, p = 9: Figure 3.33, Table 3.6

(h) C4, p = 15: Figure 3.34, Table 3.6

First, we discuss results for with minimally conforming p-levels. The solution of progressively

higher classes exhibit progressively better maps of the solution as well as the derivatives of up to

order Ci. When the solutions are of class Cj, the maps of the derivatives of order j + 1 improve

with progressively increasing order of the approximation space when the p-levels are minimally

conforming. This is due to increasing p-levels progressively by increasing the order of the space but

with the absence of hierarchical dofs which may not map accurately. When p-levels are increased

beyond minimally conforming, the map of the derivatives of order Cj+l become inaccurate (Fig.s

3.22, 3.30) for classes C' and C2 but remain good for classes C3 and C4. This is due to the fact

that minimally conforming p-levels for classes C3 and C4 are 7 and 9, respectively, at which the

original solution is relatively well converged and there are still no hierarchical dofs. Hence, the
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maps onto the rediscretization should be good. At p-level 15, d and T show very good maps

for solutions of classes C3 and C4 (Fig.s 3.32, 3.34).

Table 3.3: Convection diffusion equation (BVP): C 1 p-version hierarchical local approximations.

Solution Elements p-level I I11h - d(dxh) _dT dx(T'h) _d
2x

Mh 5 3 0.730018e-1 0.295100e-1 0.132388e0 0.321291el

m2 7 3 0.290958e-1 0.126901e0 0.307579el

(m¢hnew j 7 3 0.234047e-1 0.951054e-2 0.465439e-1 0.131715cl
Ml Oh 5 15 0.847645e-23 0.175931e-14 0.180028e-1 0.290602e-10

T 7 15 0.406817e-2 0.988658e-1 0.538991el

(m2 0ghnew 7 15 0.382862e-23 0.323930e-14 0.892078e-13 0.195499e-10
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Table 3.5: Convection diffusion equation (BVP): C3 p-version hierarchical local approximations.

Solution Elements p-level I d'(0h) - 11

5 7 0.448956c-8 0.976222el
- th7 7 - 0.937789el

(mTh)new I 7 7 0.115551e-9 0.281397el

re1 T 5 15 0.129770c-22 0.606670e-5

m2¢h 7 15 0.228179e2

7m2ih~ew 7 15 0.821314e-22 0.261075c-4

Table 3.6: Convection diffusion equation (BVP): C4 p-version hierarchical local approximations.

Solution Elements p-level I d(h) -d5 q

_ lh 5 9 0.105628c-12 0.153421e2

r2¢h 7 9 0.148577e2
(n24)~new 7 9 0.608197e-18 0.310044el

5 15 0.107051c-22 0.176433c-2m201 7 15 0.228179e2

__2__hn_ 7 15 0.260707e-23 0.161274c-2
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Figure 3.17: Convection diffusion equation (BVP): 0 versus x for original, mapped and new solu-
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Figure 3.18: Convection diffusion equation (BVP): de versus x for original, mapped and new solu-
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Figure 3.19: Convection diffusion equation (BVP): d
24 versus x for original, mapped and new
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Figure 3.20: Convection diffusion equation (BVP): 0 versus x for original, mapped and new solu-
tions.
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Figure 3.21: Convection diffusion equation (BVP): de versus x for original, mapped and new solu-
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Figure 3.23: Convection diffusion equation (BVP): 0 versus x for original, mapped and new solu-
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Figure 3.24: Convection diffusion equation (BVP): • versus x for original, mapped and new solu-
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Figure 3.25: Convection diffusion equation (BVP): d2d versus x for original, mapped and now
solutions.
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Figure 3.26: Convection diffusion equation (BVP): 7_7 versus x for original, mapped and now
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Figure 3.27: Convection diffusion equation (BVP): 0 versus x for original, mapped and new solu-
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Figure 3.30: Convection diffusion equation (BVP): d
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Figure 3.31: Convection diffusion equation (BVP): d4  versus x for original, mapped and new
solutions.
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Figure 3.32: Convection diffusion equation (BVP): d4I versus x for original, mapped and new
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Figure 3.33: Convection diffusion equation (BVP): " versus x for original, mapped and new
solutions.
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Figure 3.34: Convection diffusion equation (BVP): d5o versus x for original, mapped and new
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3.4 Two-dimensional BVP: Poisson's Equation, Local Approxima-

tions of Classes C°,0 Lagrange Type with p = p = 1, 15 and

C1,1 with pý = p 7 = 3,15

We consider steady-state Poisson's equation

o + y2= -f(x,y) over Q = (-1,1)x(-1,1) (3.2)

with

0(-l,y) = 0(l,y) = O(x, -1) = O(x, 1)

where f(x, y) is such that the theoretical solution is given by

O(x, y) = C(1-X2)(1-y2).

The differential operator is self-adjoint and hence the integral form from Galerkin method with

weak form is variationally consistent. Figure 3.35 (a) shows a schematic of the domain Q as the

original 5 x 5 uniform discretization (Figure 3.35 (b)) as well as a 7 x 7 uniform rediscretization

(Figure 3.35 (c)). We consider the following studies.

(1) Local approximations of class C0,0 Lagrange type with pý = p, = 1 and of class C0,0 p-version

hierarchical with p-level of pý = p0 = 15. We consider the integral form based on Galerkin

method with weak form.

(2) Local approximations of class C1,1 p-version hierarchical with p-levels of pý = p7 = 3,15. The

integral form is based on least squares method without auxiliary variables (i.e. strong form

of the GDE).

In all cases ml'h is computed for ml and mapped onto m2 to obtain m201,. A new solution is also

computed for m2 to obtain (, 2 ¢Oh)nw for the rediscretization m2 by resolving the BVP. Results

are summarized in the following figures and tables.

(a) C',, p, = p0 = 1; Figures 3.36, 3.37 (a), (b) and (c), Table 3.7
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Figure 3.35: Schematic, discretization and rediscretization for Poisson's equation.
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(b) C0,0, pý = P, = 15; Figures 3.37 (d), (e) and (f), Table 3.7

(c) C1,1, pý = P7 = 3; Figures 3.38, 3.39 and 3.40, Table 3.8

(d) C1,1, pý = p,, 15; Figures 3.41, 3.42 and 3.43, Table 3.8

The m'10 solution of class C0 '0 with pý = p,7 = 1 for discretization ml is unconverged and hence
has errors (Table 3.7). Graphs of • and -O clearly demonstrate inter-element jumps in the first

partial derivatives at different locations for m'10 and m20, with different magnitudes as well. m20,

is not in agreement with (ml,0h)new, which is the correct solution for m2. This demonstrates the

inter-element flux problems caused in the mapped solution due to inter-element flux problems in

the original solution m01,. Due to pý = pl, = 1 only function values are dofs at the nodes. Just

as in the case of the ID convection diffusion equation, here also, mesh refinement will minimize

the flux problems in ml'0h as well as m20 1,. Higher p-level Lagrange elements behave in a similar

fashion similar to the 1D case.

Next, we consider CO p-version hierarchical approximations for ml and m2 (Figures 3.37 (d)-

(f)). Even though the mesh is relatively coarse, due to high p-level ml'h and (m2¢ )1 n), are

sufficiently converged and are in good agreement with each other (Figures 3.37 (d) and (f)). Due

to the CO nature of the local approximations, maps of the hierarchical dofs at the mid-side and

center nodes of the elements require maps of second and higher order derivatives of ¢ with respect

to ý and r7. As a result, m
2 

Oh is spurious (Figure 3.37 (e)). Similar behavior is also observed

for the maps of the derivatives - and - onto rediscretization m2 (not shown). This problem

can be minimized or possibly corrected by first mapping the solution m'10h onto the corresponding

Lagrange configurations (requiring only function values) and then obtaining the hierarchical dofs

from these configuration.

The solutions of class C1,1 at pý = p, = 3 (Figures 3.38-3.40) show good maps and are in good

agreement with m10 1, and (ml4)n 6 , indicating no potential mapping problems for 4 as well as its

derivatives up to second order confirming weak convergence of the original solution mlo) , as well

as (r14)h)new. Solutions of class C1,1 at pi = p,7 = 15 (Figures 3.41-3.43) show good maps as well

even though higher order hierarchical dofs are mapped in this case. This is due to the fact that
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since pý = p,) = 3 solutions (with no hierarchical dofs) are sufficiently converged, the hierarchical

dofs beyond pý = pn = 3 arc not contributing significantly to the improvement in the solution and

hence the inaccuracies in their maps are of little or no consequence.

Table 3.7: Poisson's equation (BVP): C',° Lagrange local approximations.

Solution Mesh p-level I IIehI9L2  0()
reich 5x5 1 - 0.336199cl 0.247853el

"" 7x7 1 - 0.331366el 0.237681el
(m¢Z7 7x7 1 0.338225el 0.250033cl

mI 5x5 15 0- .3403821el 0.252413el

m2Oh 7x7 15 - 0.375170el 0.105981e2
(71)n7 7X7 15 0.340557cl 0.252327el

Table 3.8: Poisson's equation (BVP): C1,1 p-version hierarchical local approximations.
o(¢h) a o1(¢h) o(h

Solution Mesh p-level I IIlhNIL 2  11L9"'h) D k L2 - ( IL

mIlOh 5x5 3 0.368110e-1 0.340376el 0.252341el 0.424995el 0.401647el
-2¢h 7x7 3 - 0.340365el 0.252322el 0.424924el 0.401610el

(m275h1n§ 7x7 3 0.964658e-2 0.340380el 0.252394el 0.425025el 0.401784el
m1l(7 5>x5 15 0.321561c-11 0.340382el 0.252413el 0.425034el 0.401835el
m21h 7x7 15 0.340363cl 0.252359el 0.425034el 0.401708el

(m2¢h)1 7x7 15 0.100513e-9 0.340384el 0.252411el 0.425035cl 0.401847el
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3.5 One-dimensional Non-linear BVP: Steady-state Burgers Equa-

tion (Re = 25)

Here, we consider the steady-state Burgcrs equation as a model BVP.

dq 1 d2¢
0d Ped2 0in Q =(0,l1) (3.3)

with

0(0) = 1 , (1) =0.

We consider Re = 25, for which the theoretical solution is smooth and there are no sharp fronts.

We consider a uniform discretization of five p-version elements (ml) and a uniform rediscretization

of seven p-version elements (m2). In (3.3), the differential operator is non-linear. We consider

least squares formulation of (3.3) (strong form of GDE) for which C' is the minimally conforming

approximation class if we permit weak convergence of the second derivative of 0. We consider the

following two cases.

(a) p-level of 5, at which m11 1, is unconverged and hence has errors.

(b) p-level of 15, at which the solution m10h is weakly converged and hence is relatively free of

errors.

For each of the above cases, we choose local approximations of class C1 and perform the following

computations.

(i) A solution is computed for discretization ml: m101.

OT m

(ii) molh is mapped onto Tm2 to obtain m21.

(iii) A new solution is computed for the rediscretization m2 using boundary conditions in (3.2):

(m2 Oh)new

(iv) The mapped solution m
2 ¢,h is used as an initial solution for rediscretization m2 and Newton's

method with line search is employed to obtain a converged solution: (m2 Oh) by resolving

the BVP.
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The results are summarized in the following figures and Table 3.9.

(a) C1 , pý = 3 ; mlOh, -2Oh, (Wl¢h) ew and their derivatives up to second order; Figures 3.44-3.46

(b) C', pý = 3," - 2 0•, (rnmlh)new, ,mlhis and their derivatives up to second order; Figures

3.47-3.49

(c) C', pý = 15 ; mlh, m 2 h,L (rnlch)new and their derivatives up to second order; Figures

3.50-3.52

(d) C', pý = 15 ;w("l01,ew and their derivatives up to second order; Figures

3.53-3.55

Since at pý = 3 the solution m"0 1, is not converged, it has errors and hence its map m2Oh is

expected to have errors as well and the maps of the errors in the two cases will also be different.

In Figure 3.44, the solution map is in fair agreement with 01h,, however the correct solution for

m2 is (m 2 ¢h)aew which does not agree with the map. The differences between the mapped solution
m2Oh and (m

2 ¢)n 6 w are more pronounced in Figures 3.45 and 3.46 showing graphs of the first

and second derivatives, respectively. From Figures 3.47-3.49, showing graphs of m2h," (m
2 

01) new,

and (01,h)n w and their derivatives up to second order, we observe perfect agreement between(m2(gh newan 2. i

(m 2  ne. and (m201,h)n w and their derivatives up to second order, Even though m 2p0h is in error,

using "'2¢, as an initial solution, it is possible to obtain the correct solution for the rediscretization

m2. This is a significant merit of the proposed approach using m
2 h, as an initial solution for the

BVPs described by non-linear differential operators. Solutions of class C1 at pý = 15 (Figures

3.50-3.55) further substantiate the usefulness and merit of this approach. From these figures, we

note that even though 2
Oh and their derivatives are erroneous, (m201). " is in perfect agreement

with (m 2 0,1 )nw and their derivatives of up to second order. The findings reported here also hold

when the local approximations are of higher classes.
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Table 3.9: Burgers equation (BVP): C 1,1 p-version hierarchical local approximations.

Solution Mesh p-level I II0hilL2 dxkh) 6 (¢h)
_I _ Idh

--Tt 5 3 0.105577e0 0.829991e0 0.183169el 0.131250e2

m2h 7 3 - 0.830241e0 0.183269el 0.130113e2
(m2¢i)new 7 3 0.799813e-1 0.850746e0 0.199550el 0.155220e2
(m nc 7 3 0.799813e-1 0.850746e0 0.199549el 0.155220e2

ml h 5 15 0.113703e-10 0.959166e0 0.288675e1 6.322748e2

m27 7 15 0.963128e0 0.317969el 0.495645e2
(m2hinew 7 15 0.154861e-12 0.959166e0 0.288675el 0.322748e2
_______ 7 15 0.155708C-12 0.959166e0 0.288675cl 0.322748e2
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Figure 3.44: Burgers equation (BVP): € versus x for original, mapped and new solutions.
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Figure 3.45: Burgers equation (BVP): ý versus x for original, mapped and new solutions.
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Figure 3.46: Burgers equation (BVP): d2
o versus x for original, mapped and new solutions.
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Figure 3.47: Burgers equation (BVP): 0 versus x for mapped, new and new with initial solution.
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Figure 3.48: Burgers equation (BVP): • versus x for mapped, new and new with initial solution.
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Figure 3.49: Burgers equation (BVP): 2 versus x for mapped, new and new with initial solution.
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Figure 3.50: Burgers equation (BVP): 0 versus x for original, mapped and new solutions.
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Figure 3.51: Burgers equation (BVP): d±0 versus x for original, mapped and new solutions.
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"Figure 3.52: Burgers equation (BVP): d2 vs for original, mapped and new solutions.
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Figure 3.53: Burgers equation (BVP): 4 versus x for mapped, new and new with initial solution.
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Figure 3.54: Burgers equation (BVP): d versus x for mapped, new and new with initial solution.
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Figure 3.55: Burgers equation (BVP): " versus x for mapped, new and new with initial solution.
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3.6 Moving Mesh ID IVP: Transient Convection Diffusion Equa-

tion (Pe = 106)

We consider the following transient convection diffusion equation

-= l in Q .xQt=(0,1)x(0, T) (3.4)8_X at - Pe at2

with

(, t) 0 0'(0, t) = 0

O(x, 0) = exp(- - XD) 2  (3.5)
2o

where xO and a0 are the mean and standard deviation of the Gaussian distribution and are chosen

to be 0.2 and 0.03, respectively. Wc consider the first and subsequent space-time strips shown in

Figure 3.56. Discretization details for the first and subsequent space-time strips are also shown in

Figure 3.56. The spacial discretization in zone B is chosen such that the initial conditions described

by the Gaussian distribution arc resolved accurately. Upon evolution, this disturbance (I.C.) moves

into zone C in which the discretization is of the same refinement as in zone B and hence will yield

time accurate evolution. A time step At of 0.02 is considered. For the second space-time strip the

discretization is moved in the spatial direction by Ax = 0.02, which is in conformity with the speed

of propagation of the disturbance. The solution from the open boundary of the first space-time

strip is mapped as I.C. for the second space-time strip and the time evolution is computed. This

process is continued for each increment of time until t = T- is reached (T = 6At = 0.12). Since

the local approximations are of class C1, 1 with p-level of three in space and time, there arc no

hierarchical dofs at the mid-side and center nodes of the space-time elements, and furthermore,

since the solution for the first space-time strip is converged, we expect the I.C. map of the solution

for all space-time strips to be good. Time evolution of the solutions is shown in Figure 3.57. At

Pe = 106, the physical diffusion is insignificant and hence we expect the Gaussian distribution to

march in time without amplitude decay or base elongation as shown in Figure 3.57.

Remarks
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(a) The moving mesh procedure permits relatively coarser discretization for n., of Q,, = Qx Qt.

(b) Highly refined meshes in the area of high solution gradients and relatively coarser meshes

elsewhere are more practical and are in conformity with what is necessitated by the physics.

(c) In this approach, a micro disturbance and its propagation can be resolved over a macro

domain without excessive computational effort.

(d) The approach requires accurate mapping of the I.C. regardless of the nature of the differential

operator. The initial solution approach presented for non-linear BVPs to improve the mapped

solution cannot be used for IVPs and moving mesh approach due to the fact that I.C. are

fixed and hence cannot be altered during evolution. This does present a problem when p-

levels higher than minimally conforming for the chosen order of the approximation space are

used due to inaccuracies in the map of the hierarchical dofs. Further work to alleviate this

problem is in progress. Initial studies are promising.
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Figure 3.56: First three moving mesh space-time strips for transient convection diffusion equation.
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Chapter 4

Summary and Conclusions

Rediscretization, moving mesh and solution mapping approaches are presented for BVPs and IVPs.

These methodologies essentially require two basic steps. In the first step, the geometry of the new

discretization is mapped onto the existing discretization . In the second step, the solution from the

existing discretization is mapped onto the new discretization or rediscrctization using the geometry

map form step one. In the following, we summarize the work presented here and draw some

conclusions.

(1) In the case of BVPs, rcdiscretization requires a total map of the new discretization onto the

existing mesh and then a total map of the solution from the current or existing discretization

to the new discretization or rcdiscretization.

(2) In the case of IVPs, using space-time strips and space-time time marching, only a map of

the geometry of the boundary requiring initial conditions onto the the open boundary of the

previous or existing space-time strip is required. Using this map, the computed solution at

the open boundary of the current space-time strip is mapped onto the boundary of the moved

space-time strip that requires initial conditions.

(3) Except the basic difference discussed in (1) and (2), the mapping procedures for the geometry

and the solution for rediscretization (for BVPs) and moving meshes (IVPs) are the same.

(4) First we consider rediscretization for BVPs.

99



(a) Mapping of the rediscretization geometry onto the existing discretization is always exact

and unique when quadratic mapping is assumed for the subdomains between the physical

coordinate space x, (x, y) or (x, y, z) and 6, (6, 77) or (ý, 77, ()

(b) Accuracy of the map of the solution from the existing discretization onto the rediscretiza-

tion depends upon the type of local approximations.

(bl) When local approximations are of class Co Lagrange type in which only function

values are nodal degrees of freedom, the solution mapping procedure presented here

is good and free of any assumptions or approximations. If an unconverged solution

is mapped, then the error maps in the two discretizations are not unique. More

specifically, in the case of Co local approximations, magnitudes of inter-element

jumps in the solution derivatives normal to the inter-element boundaries and their

locations in the two maps are different. Thus, inter-element flux problems exist

in both solutions as widely reported in the literature. We clearly observe that

inter-element flux problems in the mapped solution are to to the inter-element flux

problems in the solution for the original discretization. When weakly converged

solutions are mapped, maps of the solution and its first derivative remain good,

implying a lack of serious inter-element flux problems. These findings hold true for

p = 1 as well as higher p-level Lagrange elements in 1D as well as 2D.

(b2) When the local approximations are of class CO p-version hierarchical, the solution

map onto the rediscretizations require mapping of higher order derivatives with

respect to 6 and q (ID and 2D BVPs). Due to the CO nature of the global ap-

proximations, direct mapping of the degrees of freedom using local approximations

of the subdomains of the original discretization leads to substantial inaccuracies in

the mapped solution. These inaccuracies or errors increase with increasing p-level

(corresponding to higher order derivatives with respect to 6 and q). An alternative

procedure has been proposed to overcome this difficulty, in which the solution is

first mapped onto the corresponding CO Lagrange configurations that only requires

function values and then the hierarchical dofs are recovered from these configura-
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tions. With this procedure, we expect solution maps for Co p-version hierarchical

local approximations to be good.

(b3) In the case of CJ; i = 1, 2,... higher order continuity 1D local approximations,

there are no problems with the solution map when minimally conforming p-levels

are used. p-levels higher than minimally conforming yield inaccurate solution maps

due to inaccuracies in the mapping of hierarchical dofs. This problem can also be

corrected using the corresponding Co Lagrange configurations (work in progress).

In the case of 2D higher-order continuity local approximations, preliminary studies

indicate that for C1,1 solutions, the mapping inconsistencies in at the corner

nodes are minimized when minimally conforming p-levels are used. However, for C2,2

and higher order continuity approximations, these inconsistencies occur in more dofs

at the corner nodes even when minimally conforming p-levels are used. Further work

is needed to resolve these issues (work in progress).

(5) In the case of moving meshes, the computations work exceptionally well when

(i) Only converged solutions from the current space time strip are used to determine ini-

tial conditions for the subsequent space-time strip in which the mesh has been moved

spatially.

(ii) The solution mapping process is free of errors and inaccuracies.

(iii) The initial conditions arc resolved accurately and sufficient resolution is provided ahead

of the front for its accurate time evolution over the space-time strip.

(6) When the mapping procedure for BVPs results in errors in the mapped solution caused by

using non-weakly converged solutions or due to inaccurate maps of the hierarchical dofs, the

situation is critical when the differential operators are self-adjoint or non-self adjoint due to

the fact that in both bases the differential operators are linear and there is no further mech-

anism to improve the mapped solution. When the differential operators are non-linear, the

inaccurate mapped solution can be used as a starting or initial solution for the rediscretiza-

tion and the Newton's method with line search can be used to obtain the new or 'correct'
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solution for the rediscretization. This solution always identical to the solution that one would

obtain if new computations were done for the rediscretization. This feature is powerful in the

sense that it permits us to eliminate the mapping errors in the solution map onto the redis-

cretization. In the case of IVPs, the situation is slightly different due to the fact that there

appears to be no such mechanism to eliminate the inaccuracies in the map of the hierarchical

dofs for the initial conditions due to the fact that initial conditions are fixed. Thus, for IVPs

an accurate map of the initial conditions for the moved mesh is essential for accurate time

evolutions.

(7) Benefits of higher-order continuity local approximations are clearly demonstrated. When

local approximations of class C0 are weakly converged, the solution maps contain accurate

values of the solution and its derivatives up to order j + 1. This is only possible in the h-p-k

framework.

(8) Numerical studies presented for 1D and 2D BVPs and ID IVPs demonstrate various features of

rediscretizations and moving mesh procedures proposed in this work. Possible remedies have

been suggested to overcome the mapping inaccuracies in hierarchical dofs and higher-order

continuity local approximations. Preliminary studies are promising. With the procedures

proposed here, large deformation large strain studies for solid mechanics can be done accu-

rately using the total Lagrangian approach. Moving fronts for IVPs can be simulated using

coarser spatial discretizations. Lastly, it is envisioned that simulations of moving micro fronts

on a macro scale will be possible using the moving mesh procedure proposed here. Simulation

of moving shocks in a Riemann shock tube of actual physical dimensions is an example of

such physics.
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